skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wavefield-based evaluation of DAS instrument response and array design
SUMMARY Distributed acoustic sensing (DAS) networks promise to revolutionize observational seismology by providing cost-effective, highly dense spatial sampling of the seismic wavefield, especially by utilizing pre-deployed telecomm fibre in urban settings for which dense seismic network deployments are difficult to construct. However, each DAS channel is sensitive only to one projection of the horizontal strain tensor and therefore gives an incomplete picture of the horizontal seismic wavefield, limiting our ability to make a holistic analysis of instrument response. This analysis has therefore been largely restricted to pointwise comparisons where a fortuitious coincidence of reference three-component seismometers and colocated DAS cable allows. We evaluate DAS instrument response by comparing DAS measurements from the PoroTomo experiment with strain-rate wavefield reconstructed from the nodal seismic array deployed in the same experiment, allowing us to treat the entire DAS array in a systematic fashion irrespective of cable geometry relative to the location of nodes. We found that, while the phase differences are in general small, the amplitude differences between predicted and observed DAS strain rates average a factor of 2 across the array and correlate with near-surface geology, suggesting that careful assessment of DAS deployments is essential for applications that require reliable assessments of amplitude. We further discuss strategies for empirical gain corrections and optimal placement of point sensor deployments to generate the best combined sensitivity with an already deployed DAS cable, from a wavefield reconstruction perspective.  more » « less
Award ID(s):
1848166
PAR ID:
10405145
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
229
Issue:
1
ISSN:
0956-540X
Page Range / eLocation ID:
21 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article documents a comprehensive subsurface imaging experiment using seismic waves in a well-studied outdoor laboratory at Newberry, Florida, which is known for significant spatial variability, karstic voids, and underground anomalies. The experiment used approximately two kilometers of distributed acoustic sensing (DAS) fiber-optic cable, forming a dense 2D array of 1920 horizontal-component channels, and a 2D array of 144 SmartSolo three-component nodal seismometers, to sense active-source and passive-wavefield seismic waves. The active-source data were generated using a powerful, triaxial vibroseis shaker truck (T-Rex) and impact sources (accelerated weight drop and an eight-pound sledgehammer) that were simultaneously recorded by both the DAS and nodal seismometers. The vibroseis truck was used to excite the ground in three directions (two horizontal and one vertical) at 260 locations inside and outside the instrumented array, whereas the impact sources were used at 268 locations within the instrumented array. The passive-wavefield data recorded using the nodal seismometers comprised 48 hr of ambient noise collected over a period of four days in four 12-hour time blocks, whereas the passive wavefield data collected using DAS consisted of four hours of ambient noise recordings. This article aims to provide a comprehensive overview of the testing site, experiment layout, the DAS and nodal seismometer acquisition parameters, and implemented raw data processing steps. Although potential use cases, such as surface-wave testing, full-waveform inversion, and ambient noise tomography, are discussed relative to example data, the focus of this article is on documenting this unique data set and presenting its initial data quality rather than on generating subsurface imaging results. The raw and processed data, along with detailed documentation of the experiment and Python tools to aid in visualizing the DAS data set, have been made publicly available. 
    more » « less
  2. Abstract Significant interest has developed in using optical fibers for seismology through Distributed Acoustic Sensing (DAS). However, converting DAS strain measurements to actual ground motions can result in errors and uncertainties due to imperfect coupling of the fiber to the earth and instrument response functions. To address this, we conducted a comparative analysis of strain data recorded by DAS, Optical Fiber Strainmeters (OFSs), and estimates derived from seismic data. This study used dark fibers in a commercial cable connecting two islands in Puget Sound, Washington, USA. The cable extends from a telecommunication substation on Whidbey Island, through an underground conduit, and across Saratoga Passage to Camano Island. The strain along the cable was recorded using OFS Michelson interferometers and a DAS interrogator, with a broadband seismometer positioned at one end. Comparing a teleseismic earthquake recording showed that summed DAS channels agreed well with OFS recordings. The amplitude discrepancies between the measurements and the seismometer's estimated strain indicated poor coupling between the cable and the earth. We also evaluated DAS amplitude response using a piezoelectric cylinder (PZT) to generate ground truth strain. The findings revealed a notable amplitude decrease in DAS recordings at lower frequencies, highlighting the need for amplitude calibration. Moreover, some underwater signals in the study area were strongly correlated with the velocity of the tidal current. These signals can be localized through coherence calculations between the DAS and OFS recordings. 
    more » « less
  3. Abstract We present a real-data test for offshore earthquake early warning (EEW) with distributed acoustic sensing (DAS) by transforming submarine fiber-optic cable into a dense seismic array. First, we constrain earthquake locations using the arrival-time information recorded by the DAS array. Second, with site effects along the cable calibrated using an independent earthquake, we estimate earthquake magnitudes directly from strain rate amplitudes by applying a scaling relation transferred from onshore DAS arrays. Our results indicate that using this single 50 km offshore DAS array can offer ∼3 s improvement in the alert time of EEW compared to onshore seismic stations. Furthermore, we simulate and demonstrate that multiple DAS arrays extending toward the trench placed along the coast can uniformly improve alert times along a subduction zone by more than 5 s. 
    more » « less
  4. Quantitative dynamic strain measurements of the ground would be useful for engineering scale problems such as monitoring for natural hazards, soil-structure interaction studies, and non-invasive site investigation using full waveform inversion (FWI). Distributed acoustic sensing (DAS), a promising technology for these purposes, needs to be better understood in terms of its directional sensitivity, spatial position, and amplitude for application to engineering-scale problems. This study investigates whether the physical measurements made using DAS are consistent with the theoretical transfer function, reception patterns, and experimental measurements of ground strain made by geophones. Results show that DAS and geophone measurements are consistent in both phase and amplitude for broadband (10 s of Hz), high amplitude (10 s of microstrain), and complex wavefields originating from different positions around the array when: (1) the DAS channels and geophone locations are properly aligned, (2) the DAS cable provides good deformation coupling to the internal optical fiber, (3) the cable is coupled to the ground through direct burial and compaction, and (4) laser frequency drift is mitigated in the DAS measurements. The transfer function of DAS arrays is presented considering the gauge length, pulse shape, and cable design. The theoretical relationship between DAS-measured and pointwise strain for vertical and horizontal active sources is introduced using 3D elastic finite-difference simulations. The implications of using DAS strain measurements are discussed including directionality and magnitude differences between the actual and DAS-measured strain fields. Estimating measurement quality based on the wavelength-to-gauge length ratio for field data is demonstrated. A method for spatially aligning the DAS channels with the geophone locations at tolerances less than the spatial resolution of a DAS system is proposed. 
    more » « less
  5. Abstract Distributed acoustic sensing (DAS) is being explored in a variety of environments as a promising technology for the recording of seismic signals in dense array configurations. There is a particular interest for deploying DAS arrays on the ocean floor, presenting formidable challenges for conventional seismology. Taking advantage of the availability of a dark fiber on the Monterey Bay Accelerated Research System (MARS) 52 km offshore cable at Monterey Bay, California, in July 2022, we installed a DAS interrogator at the shore end of the cable with the intention of acquiring continuous data for a period of one year. Here, we describe the experiment and present examples of observations over the first six months of the deployment. 
    more » « less