skip to main content


Title: The Tropical Diurnal Cycle Under Varying States of the Monsoonal Background Wind
Abstract The impact of the environmental background wind on the diurnal cycle near tropical islands is examined in observations and an idealized model. Luzon Island in the northern Philippines is used as an observational test case. Composite diurnal cycles of CMORPH precipitation are constructed based on an index derived from the first empirical orthogonal function (EOF) of ERA5 zonal wind profiles. A strong precipitation diurnal cycle and pronounced offshore propagation in the leeward direction tends to occur on days with a weak, offshore prevailing wind. Strong background winds, particularly in the onshore direction, are associated with a suppressed diurnal cycle. Idealized high resolution 2-D Cloud Model 1 (CM1) simulations test the dependence of the diurnal cycle on environmental wind speed and direction by nudging the model base-state toward composite profiles derived from the reanalysis zonal wind index. These simulations can qualitatively replicate the observed development, strength, and offshore propagation of diurnally generated convection under varying wind regimes. Under strong background winds, the land-sea contrast is reduced, which leads to a substantial reduction in the strength of the sea-breeze circulation and precipitation diurnal cycle. Weak offshore prevailing winds favor a strong diurnal cycle and offshore leeward propagation, with the direction of propagation highly sensitive to the background wind in the lower free troposphere. Offshore propagation speed appears consistent with density current theory rather than a direct coupling to a single gravity wave mode, though gravity waves may contribute to a destabilization of the offshore environment.  more » « less
Award ID(s):
1735978 1841754
NSF-PAR ID:
10398649
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
ISSN:
0022-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The mechanisms regulating the relationship between the tropical island diurnal cycle and large-scale modes of tropical variability such as the boreal summer intraseasonal oscillation (BSISO) are explored in observations and an idealized model. Specifically, the local environmental conditions associated with diurnal cycle variability are explored. Using Luzon Island in the northern Philippines as an observational test case, a novel probabilistic framework is applied to improve the understanding of diurnal cycle variability. High-amplitude diurnal cycle days tend to occur with weak to moderate offshore low-level wind and near to above average column moisture in the local environment. The transition from the BSISO suppressed phase to the active phase is most likely to produce the wind and moisture conditions supportive of a substantial diurnal cycle over western Luzon and the South China Sea (SCS). Thus, the impact of the BSISO on the local diurnal cycle can be understood in terms of the change in the probability of favorable environmental conditions. Idealized high-resolution 3D Cloud Model 1 (CM1) simulations driven by base states derived from BSISO composite profiles are able to reproduce several important features of the observed diurnal cycle variability with BSISO phase, including the strong, land-based diurnal cycle and offshore propagation in the transition phases. Background wind appears to be the primary variable controlling the diurnal cycle response, but ambient moisture distinctly reduces precipitation strength in the suppressed BSISO phase and enhances it in the active phase.

     
    more » « less
  2. Abstract

    The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

     
    more » « less
  3. Abstract

    Precipitation in the region surrounding the South China Sea over land and coastal waters exhibits a strong diurnal cycle associated with a land–sea temperature contrast that drives a sea-breeze circulation. The boreal summer intraseasonal oscillation (BSISO) is an important modulator of diurnal precipitation patterns, an understanding of which is a primary goal of the field campaign Propagation of Intraseasonal Tropical Oscillations (PISTON). Using 21 years of CMORPH precipitation for Luzon Island in the northern Philippines, it is shown that the diurnal cycle amplitude is generally maximized over land roughly 1 week before the arrival of the broader oceanic convective envelope associated with the BSISO. A strong diurnal cycle in coastal waters is observed in the transition from the inactive to active phase, associated with offshore propagation of the diurnal cycle. The diurnal cycle amplitude is in phase with daily mean precipitation over Mindanao but is nearly out of phase over Luzon. The BSISO influence on the diurnal cycle on the eastern side of topography is nearly opposite to that on the western side. Using wind, moisture, and radiation products from the ERA5 reanalysis, it is proposed that the enhanced diurnal cycle west of the mountains during BSISO suppressed phases is related to increased insolation and weaker prevailing onshore winds that promote a stronger sea-breeze circulation when compared with the May–October mean state. Offshore propagation is suppressed until ambient midlevel moisture increases over the surrounding oceans during the transition to the active BSISO phase. In BSISO enhanced phases, strong low-level winds and increased cloudiness suppress the sea-breeze circulation.

     
    more » « less
  4. Abstract

    We use an 11‐year numerically downscaled climatology to diagnose various characteristics of downslope windstorms known as Sundowners that occur along the Central California coast. At the surface, Sundowners are manifested as strong northerly winds along the southern slopes of the east‐west trending Santa Ynez Mountains that are part of a lee slope jet forced by internal gravity wave breaking aloft. Our analysis shows that barotropic shallow water interfacial waves along an elevated inversion do not play any significant part in Sundowner dynamics. The mountain wave is forced on a diurnal basis by the synoptically driven strong jet of north‐northwesterly winds located just offshore, which propagates into and through the Santa Ynez Valley. The occurrence of Sundowners is associated with a transcritical transition of the barotropic shallow water mode of the marine boundary layer around the Southern California Bight. The strength and presence of the alongshore jet are of primary importance in determining upstream profiles of wind speed and static stability and thus the magnitude and location of most Sundowner events. This is especially true for the relatively common and mild Gaviota‐type events that frequently occur during spring in the western part of the range. We show that in a general sense, there is no distinct eastern or Montecito type of Sundowner event but rather a continuum of Sundowners based on wind direction upstream near ridgetop height. Montecito‐type events tend to occur in conjunction with internal gravity wave breaking over the upstream San Rafael range that enhances mountain wave activity near Montecito.

     
    more » « less
  5. An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s −1 ) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC. 
    more » « less