skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-phase Impingement Cooling using a Trapezoidal Groove Microchannel Heat Sink and Dielectric Coolant HFE 7000
This paper focuses on two-phase flow boiling of dielectric coolant HFE 7000 inside a copper multi-microchannel heat sink for high heat flux chip applications. The heat sink is composed of parallel microchannels, 200 μm wide, 2500 μm high, and 20 mm long, with 200-μm-thick fins separating the channels. The copper heat sink consists of almost 100 channels connected by a longitude groove with a nearly trapezoidal cross section. Coolant impinges down to the base at the groove and then goes along the microchannels. A copper block heater arrangement was used to mimic a computer chip with a footprint of 1”x1” (6.45 cm2). The base heat flux was varied from 7.75 W/cm2 to 96.1 W/cm2 and the mass flux from 547.6 to 958.4 kg/m2s, at a nominal saturation temperature of 54 °C. Heat transfer coefficients as high as 57.5 kW/m2K were reached, keeping the base temperature under 66 °C with a maximum of 21.9 kPa of pressure drop, for inlet subcooling of 5 degree and a coolant flow rate of 958.4 kg/m2. Effects of inner diameter of tubing on thermal performance and pressure drop are also discussed. It was observed that an increase of tubing inner diameter by 60 % can result in increase of heat transfer coefficient by 47.8 % and reduction in pressure drop by 63 %.  more » « less
Award ID(s):
1941181
PAR ID:
10398674
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
Page Range / eLocation ID:
237 to 245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work presents the experimental characterization of pool boiling heat transfer enhancement on cylindrical tubes with circumferential micro-channels using saturated water at atmospheric pressure as the working fluid. Three engineered copper tubes with 300 μm, 600 μm and 900 μm fin width and a fixed 400 μm channel width with 410 μm channel depth were machined using CNC. To compare the boiling enhancement on engineered tubes, one plain copper tube was used as the reference heater. The active heating area on the cylindrical tubes had a dimension of 9.5 mm outer diameter and 10.5 mm length. A custom-built cylindrical heater was designed using a nichrome wire coil of 30 AWG with a resistance of 19.57 Ω/inch of coil to provide joule heating to the cylindrical tubes. The electrical wire was insulated from the copper heater using a thin layer of alumina paste. The saturated pool boiling tests up to critical heat flux (CHF) were conducted at atmospheric pressure. While an approximate CHF of ∼70 W/cm2 was achieved for the plain copper tube, the cylindrical tube with microchannel geometry showed a CHF range of 131–144 W/cm2 that corresponds to 87%–100% enhancement as compared to plain cylindrical tube. 
    more » « less
  2. The increasing prevalence of high-performance computing data centers necessitates the adoption of cutting-edge cooling technologies to ensure the safe and reliable operation of their powerful microprocessors. Two-phase cooling schemes are well-suited for high heat flux scenarios because of their high heat transfer coefficients and their ability to enhance chip temperature uniformity. In this study, we perform experimental characterization and deep learning driven optimization of a commercial two-phase cold plate. The initial working design of the cold plate comprises a fin height of 3mm, fin thickness of 0.1 mm, and a channel width of 0.1 mm.A dielectric coolant, Novec /HFE 7000, was impinged into microchannel fins through impinging jets. A copper block simulated an electronic chip with a surface area of 1˝ × 1˝. The experiment was conducted with three different coolant inlet temperatures of 25◦ C, 36◦ C, and 48◦ C with varying heat flux levels ranging from 7.5 to 73.5 W cm2. The effects of coolant inlet temperatures and flow rate on the thermo-hydraulic performance of the cold plate were explored. In two-phase flow, increasing coolant inlet temperature results in more nucleation sites and improved thermal performance consequently. Thermal resistance drops with flow rate in single-phase flow while it is not affected by flow rate in nucleate boiling region. An improvement in the design of the cold plate was carried out, with the goal of increasing the number of bubble sites and flow velocity at the root fins, by cutting the original fins and creating channels perpendicular to the original channels. Three design parameters, fin height, width of machined channels, and height of short fins preserved through machined channels, were defined. It was observed that widening the machined channels and cutting fins to some point can improve the thermal performance of the cold plate. However, removing fins excessively adversely affects the thermal performance of the cold plate because of loss of heat transfer surface area. Moreover, preserving the short fins through the machined channels decreases thermal resistance as they increase heat transfer surface area and nucleation sites. Furthermore, a deep learning-based compact model is demonstrated for the two-phase cold plate design in the specific range of geometry and flow conditions. The developed compact model is utilized to drive the single and multi-objective optimization to arrive at global optimal results. 
    more » « less
  3. Due to their lower pressure drop, impinging cold-plates are preferred over parallel flow cold-plates when there is no strict space limitation (i.e. when flow can enter perpendicular to the electronic board). Splitting the flow into two branches cuts the flow rate and path in half, which leads to lower pressure drop through the channels. A groove is used to direct the flow exiting the diffuser into the channels. The number of the geometric design parameters of the cold-plate will vary depending on the shape of the groove. In this research, the response surface method (RSM) was used to optimization the fin geometry of an impinging cold-plate with a trapezoidal cross section groove. The cold plate is used for warm water cooling of electronics. Three fin parameters (thickness, height, and gap) and three groove parameters were optimized to reach minimum values for hydraulic and thermal resistances at fixed values of coolant inlet temperature, coolant flow rate, and electronic chip power. 
    more » « less
  4. Due to their lower pressure drop, impinging cold-plates are preferred over parallel flow cold-plates when there is no strict space limitation (i.e. when flow can enter perpendicular to the electronic board). Splitting the flow into two branches cuts the flow rate and path in half, which leads to lower pressure drop through the channels. A groove is used to direct the flow exiting the diffuser into the channels. The number of the geometric design parameters of the cold-plate will vary depending on the shape of the groove. In this research, the response surface method (RSM) was used to optimization the fin geometry of an impinging cold-plate with a trapezoidal cross section groove. The cold plate is used for warm water cooling of electronics. Three fin parameters (thickness, height, and gap) and three groove parameters were optimized to reach minimum values for hydraulic and thermal resistances at fixed values of coolant inlet temperature, coolant flow rate, and electronic chip power. 
    more » « less
  5. Heat fluxes in the data center have been increasing significantly due to the rise in advanced technologies such as Artificial Intelligence (AI), 5G, high-performance computing (HPC), and machine learning. The traditional air-cooling technology cannot handle high heat fluxes and requires a bigger heat sink; therefore, hindering high heat flux and high density in the data center. Two-phase cooling schemes are particularly appropriate for high heat flux situations because of their enhanced heat transfer coefficients and the non-linear relationship between heat flux and surface-to-fluid temperature difference. In this study, an experimental setup was developed to characterize and optimize the thermo-hydraulic performance of two-phase cooling cold plates intended for high heat flux applications. An improvement of 12% in thermal performance was obtained by cutting the original fins and creating mini-channels perpendicular to the original microchannels without a significant pressure drop penalty. 
    more » « less