Polymeric nanoparticles containing multiple amines and carboxylates have been frequently used in drug delivery research. Reproducible and controlled conjugation among these multifunctional biomaterials is necessary to achieve efficient drug delivery platforms. However, multiple functional groups increase the risk of unintended intramolecular/intermolecular reactions during conjugation. Herein, conjugation approaches and possible undesired reactions between multi-amine functionalized peptides, multi-carboxylate functionalized polymers, and anhydride-containing polymers [Poly(styrene-alt-maleic anhydride)-b-poly(styrene)] were investigated under different conjugation strategies (carbodiimide chemistry, anhydride ring-opening via nucleophilic addition elimination). Muti-amine peptides led to extensive crosslinking between polymers regardless of the conjugation chemistry. Results also indicate that conventional peptide quantification methods (i.e., o-phthalaldehyde assay, bicinchoninic acid assay) are unreliable. Gel permeation chromatography (GPC) provided more accurate qualitative and quantitative evidence for intermolecular crosslinking. Crosslinking densities were correlated with higher feed ratios of multifunctional peptides and carbodiimide coupling reagents. Selectively protected peptides (Lys-Alloc) exhibited no crosslinking and yielded peptide-polymer conjugates with controlled dispersity and molecular weight. Furthermore, anhydride ring-opening (ARO) nucleophilic addition elimination was successfully introduced as a facile yet robust peptide conjugation approach for cyclic anhydride-containing polymers.
more »
« less
Facile Synthesis of Multifunctional Bioreducible Polymers for mRNA Delivery
Abstract Bioreducible polymeric mRNA carriers are an emerging family of vectors for gene delivery and vaccine development. A few bioreducible systems have been generated through aqueous‐phase ring‐opening polymerization of lipoic acid derivatives, however this methodology limits hydrophobic group incorporation and functionality into resulting polymers. Herein, a poly(active ester)disulfide polymer is synthesized that can undergo facile aminolysis with amine‐containing substrates under stoichiometric control and mild reaction conditions to yield a library of multifunctional polydisulfide polymers. Functionalized polydisulfide polymer species form stable mRNA‐polymer nanoparticles for intracellular delivery of mRNAsin vitro. Alkyl‐functionalized polydisulfide‐RNA nanoparticles demonstrate rapid cellular uptake and excellent biodegradability when delivering EGFP and OVA mRNAs to cellsin vitro. This streamlined polydisulfide synthesis provides a new facile methodology for accessing multifunctional bioreducible polymers as biomaterials for RNA delivery and other applications.
more »
« less
- Award ID(s):
- 2004555
- PAR ID:
- 10398787
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 12
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical in vitro reconstituted virus-like particles(VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate in vitro assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chloroticmottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV). The mRNA gene is rendered self-amplifying by genetically fusing it to the RNA-dependent RNA polymerase (RdRp) of Nodamura virus, and the relative efficacies of cell uptake and downstream protein expression resulting from their CCMV- and TMV-packaged forms are compared directly. This comparison is carried out by their transfections into cells in culture: expressions of two self-amplifying genes, enhanced yellow fluorescent protein (EYFP) and Renilla luciferase (Luc), packaged alternately in CCMV and TMV VLPs, are quantified by fluorescence and chemiluminescence levels, respectively, and relative numbers of the delivered mRNAs are measured by quantitative real-time PCR. The cellular uptake of both forms of these VLPs is further confirmed by confocal microscopy of transfected cells. Finally, VLP-mediated delivery of the self-amplifying- mRNA in mice following footpad injection is shown by in vivo fluorescence imaging to result in robust expression of EYFP in the draining lymph nodes, suggesting the potential of these plant virus-like particles as a promising mRNA gene and vaccine delivery modality. These results establish that both CCMV and TMV VLPs can deliver their in vitro packaged mRNA genes to immune cells and that their self-amplifying forms significantly enhance in situ expression. Choice of one VLP (CCMV or TMV) over the other will depend on which geometry of nucleocapsid is self-assembled more efficiently for a given length and sequence of RNA, and suggests that these plant VLP gene delivery systems will prove useful in a wide variety of medical applications, both preventive and therapeutic.more » « less
-
A facile methodology to prepare N-heterocyclic carbene (NHC)-terminated polymers as surface ligands to functionalize gold nanoparticles (AuNPs) is reported. Our method highlights a mild, aerobic synthesis of NHC-functionalized polymers and a simple ligand exchange approach towards surface modification of AuNPs prepared in aqueous solution. Two methods, including end-group functionalization of halogen-ended polymers from a conventional atom transfer radical polymerization (ATRP) and post-polymerization functionalization of imidazole-containing polymers using imidazole-containing ATRP initiator, have been investigated to prepare imidazolium-ended polymers. Using a one-step, oxygen and moisture tolerant procedure, the polymer–NHC–Cu( i ) species can be synthesized from imidazolium-ended polymers and readily bind to citrate-capped AuNPs likely through transmetalation, yielding robust polymer-stabilized AuNPs. Our synthetic method significantly simplifies the preparation and use of polymer–NHC ligands for surface functionalization of metal NPs. Our methodology is general and potentially applicable to any polymers prepared by ATRP to functionalize metal NPs via NHC–metal coordination; therefore, it will likely broaden the applications of polymer–NHC ligands for metal nanoparticles in the fields of catalysis and nanomedicine.more » « less
-
Abstract SARS‐CoV‐2 has led to a worldwide pandemic, catastrophically impacting public health and the global economy. Herein, a new class of lipid‐modified polymer poly (β‐amino esters) (L‐PBAEs) is developed via enzyme‐catalyzed esterification and further formulation of the L‐PBAEs with poly(d,l‐lactide‐coglycolide)‐b‐poly(ethylene glycol) (PLGA‐PEG) leads to self‐assembly into a “particle‐in‐particle” (PNP) nanostructure for gene delivery. Out of 24 PNP candidates, the top‐performing PNP/C12‐PBAE nanoparticles efficiently deliver both DNA and mRNA in vitro and in vivo, presenting enhanced transfection efficacy, sustained gene release behavior, and excellent stability for at least 12 months of storage at −20 °C after lyophilization without loss of transfection efficacy. Encapsulated with spike encoded plasmid DNA and mRNA, the lipid‐modified polymeric PNP COVID‐19 vaccines successfully elicit spike‐specific antibodies and Th1‐biased T cell immune responses in immunized mice even after 12 months of lyophilized storage at −20 °C. This newly developed lipid‐polymer hybrid PNP nanoparticle system demonstrates a new strategy for both plasmid DNA and mRNA delivery with the capability of long‐term lyophilized storage.more » « less
-
Abstract RNA‐based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP‐mediated mRNA translation. Here, we optimized IL tail length for LNP‐mediated delivery of three different mRNA cargos. Using C12‐200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10‐200, an IL with shorter tail lengths than C12‐200, enhance liver transfection by over 10‐fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13‐200 IL led to EPO translation at levels similar to the C12‐200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9‐200 IL induced over three times the quantity of indels compared with the C12‐200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.more » « less
An official website of the United States government
