Abstract Bioreducible polymeric mRNA carriers are an emerging family of vectors for gene delivery and vaccine development. A few bioreducible systems have been generated through aqueous‐phase ring‐opening polymerization of lipoic acid derivatives, however this methodology limits hydrophobic group incorporation and functionality into resulting polymers. Herein, a poly(active ester)disulfide polymer is synthesized that can undergo facile aminolysis with amine‐containing substrates under stoichiometric control and mild reaction conditions to yield a library of multifunctional polydisulfide polymers. Functionalized polydisulfide polymer species form stable mRNA‐polymer nanoparticles for intracellular delivery of mRNAsin vitro. Alkyl‐functionalized polydisulfide‐RNA nanoparticles demonstrate rapid cellular uptake and excellent biodegradability when delivering EGFP and OVA mRNAs to cellsin vitro. This streamlined polydisulfide synthesis provides a new facile methodology for accessing multifunctional bioreducible polymers as biomaterials for RNA delivery and other applications.
more »
« less
Reproducible and controlled peptide functionalization of polymeric nanoparticles
Polymeric nanoparticles containing multiple amines and carboxylates have been frequently used in drug delivery research. Reproducible and controlled conjugation among these multifunctional biomaterials is necessary to achieve efficient drug delivery platforms. However, multiple functional groups increase the risk of unintended intramolecular/intermolecular reactions during conjugation. Herein, conjugation approaches and possible undesired reactions between multi-amine functionalized peptides, multi-carboxylate functionalized polymers, and anhydride-containing polymers [Poly(styrene-alt-maleic anhydride)-b-poly(styrene)] were investigated under different conjugation strategies (carbodiimide chemistry, anhydride ring-opening via nucleophilic addition elimination). Muti-amine peptides led to extensive crosslinking between polymers regardless of the conjugation chemistry. Results also indicate that conventional peptide quantification methods (i.e., o-phthalaldehyde assay, bicinchoninic acid assay) are unreliable. Gel permeation chromatography (GPC) provided more accurate qualitative and quantitative evidence for intermolecular crosslinking. Crosslinking densities were correlated with higher feed ratios of multifunctional peptides and carbodiimide coupling reagents. Selectively protected peptides (Lys-Alloc) exhibited no crosslinking and yielded peptide-polymer conjugates with controlled dispersity and molecular weight. Furthermore, anhydride ring-opening (ARO) nucleophilic addition elimination was successfully introduced as a facile yet robust peptide conjugation approach for cyclic anhydride-containing polymers.
more »
« less
- Award ID(s):
- 2325340
- PAR ID:
- 10499479
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Biomaterials Science
- Volume:
- 1
- ISSN:
- 2813-3749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Post-polymerization modification (PPM) has been broadly employed to achieve functional polymer brush surfaces via immobilization of functional moieties on the brush using efficient organic tranformations. Here, we demonstrate the amine-anhydride reaction as a modular PPM route to functional brush surfaces using poly(styrene–maleic anhydride) (pSMA) copolymer brushes as a platform. The amine-anhydride reaction on pSMA surfaces proceeds to high conversions, with rapid kinetics, under ambient reaction conditions, and exploits a readily available library of functional amines. Using cystamine as a modifier, a convenient route to thiol-functionalized brushes was developed that enables sequential PPM modifications with a large library of alkenes using both base-catalyzed thiol-Michael and radical-mediated thiol–ene reactions. The high fidelity PPM reactions were demonstrated via the development of multifunctional, micropatterned brush surfaces.more » « less
-
Rare earth elements (REEs) are a vital part of many technologies with particular importance to the renewable energy sector and there is a pressing need for environmentally friendly and sustainable processes to recover and recycle them from waste streams. Functionalized polymer scaffolds are a promising means to recover REEs due to the ability to engineer both transport properties of the porous material and specificity for target ions. In this work, REE adsorbing polymer scaffolds were synthesized by first introducing poly(glycidyl methacrylate) (GMA) brushes onto porous polyvinylidene fluoride (PVDF) surface through activator generated electron transfer atom transfer radical polymerization (AGET ATRP). Azide moieties were then introduced through a ring opening reaction of GMA. Subsequently, REE-binding peptides were conjugated to the polymer surface through copper catalyzed azide alkyne cycloaddition (CuAAC) click chemistry. The presence of GMA, azide, and peptide was confirmed through Fourier transform infrared spectroscopy. Polymer scaffolds functionalized with the REE-binding peptide bound cerium, while polymer scaffolds functionalized with a scrambled control peptide bound significantly less cerium. Importantly, this study shows that the REE binding peptide retains its functionality when bound to a polymer surface. The conjugation strategy employed in this work can be used to introduce peptides onto other polymeric surfaces and tailor surface specificity for a wide variety of ions and small molecules.more » « less
-
Macrocycles, compounds containing a ring of 12 or more atoms, find use in human medicine, fragrances, and biological ion sensing. The efficient preparation of macrocycles is a fundamental challenge in synthetic organic chemistry because the high entropic cost of large-ring closure allows undesired intermolecular reactions to compete. Here, we present a bioinspired strategy for macrocycle formation through carbon–carbon bond formation. The process relies on a catalytic oligomer containing α- and β-amino acid residues to template the ring-closing process. The α/β-peptide foldamer adopts a helical conformation that displays a catalytic primary amine–secondary amine diad in a specific three-dimensional arrangement. This catalyst promotes aldol reactions that form rings containing 14 to 22 atoms. Utility is demonstrated in the synthesis of the natural product robustol.more » « less
-
Ye, Qingsong (Ed.)Biodegradable and adaptable polymeric materials are currently being studied due to their wide scope of potential applications, from nanomedicine to novel multifunctional materials. One such class of polymers are poly(disulfide)s, which contain repeating disulfide bonds in their main chain. Lipoic acid, or thioctic acid, is a biologically derived small molecule containing a 1,2-dithiolane ring capable of undergoing ring opening polymerization to yield poly(disulfide)s. In this review, we highlight the synthesis of lipoic acid-based poly(disulfide)s through thermal and thiolate-initiated ring opening polymerizations, and the development of methodology pertaining to the synthetic methods. We further discuss the biomedical applications of poly(disulfide)s, which have been widely used to construct various responsive biomaterials, including polymer-drug conjugates, nanoparticles, hydrogels, and adhesives.more » « less