skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measuring the Obliquities of the TRAPPIST-1 Planets with MAROON-X
Abstract A star’s obliquity with respect to its planetary system can provide us with insight into the system’s formation and evolution, as well as hinting at the presence of additional objects in the system. However, M dwarfs, which are the most promising targets for atmospheric follow-up, are underrepresented in terms of obliquity characterization surveys due to the challenges associated with making precise measurements. In this paper, we use the extreme-precision radial velocity (RV) spectrograph MAROON-X to measure the obliquity of the late M dwarf TRAPPIST-1. With the Rossiter–McLaughlin effect, we measure a system obliquity of 2 ° 19 + 17 and a stellar rotational velocity of 2.1 ± 0.3 km s−1. We were unable to detect stellar surface differential rotation, and we found that a model in which all planets share the same obliquity was favored by our data. We were also unable to make a detection of the signatures of the planets using Doppler tomography, which is likely a result of the both the slow rotation of the star and the low signal-to-noise ratio of the data. Overall, TRAPPIST-1 appears to have a low obliquity, which could imply that the system has a low primordial obliquity. It also appears to be a slow rotator, which is consistent with past characterizations of the system and estimates of the star’s rotation period. The MAROON-X data allow for a precise measurement of the stellar obliquity through the Rossiter–McLaughlin effect, highlighting the capabilities of MAROON-X and its ability to make high-precision RV measurements around late, dim stars.  more » « less
Award ID(s):
2108465
PAR ID:
10398804
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
3
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 129
Size(s):
Article No. 129
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Measuring the obliquities of stars hosting giant planets may shed light on the dynamical history of planetary systems. Significant efforts have been made to measure the obliquities of FGK stars with hot Jupiters, mainly based on observations of the Rossiter–McLaughlin effect. In contrast, M dwarfs with hot Jupiters have hardly been explored because such systems are rare and often not favorable for such precise observations. Here, we report the first detection of the Rossiter–McLaughlin effect for an M dwarf with a hot Jupiter, TOI-4201, using the Gemini-North/MAROON-X spectrograph. We find TOI-4201 to be well aligned with its giant planet, with a sky-projected obliquity of λ = 3.0 3.2 + 3.7 ° and a true obliquity of ψ = 21.3 12.8 + 12.5 ° with an upper limit of 40at a 95% confidence level. The result agrees with dynamically quiet formation or tidal obliquity damping that realigned the system. As the first hot Jupiter around an M dwarf with its obliquity measured, TOI-4201b joins the group of aligned giant planets around cool stars (Teff< 6250 K), as well as the small but growing sample of planets with relatively high planet-to-star mass ratio (Mp/M*≳ 3 × 10−3) that also appear to be mostly aligned. 
    more » « less
  2. Abstract The warm Neptune GJ 3470b transits a nearby (d= 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of λ = 98 12 + 15 and a v sin i = 0.85 0.33 + 0.27 km s 1 . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of ψ = 95 8 + 9 , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of γ ̇ = 0.0022 ± 0.0011 m s 1 day 1 over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere. 
    more » « less
  3. Abstract A star's spin–orbit angle can give us insight into a system's formation and dynamical history. In this paper, we use MAROON-X observations of the Rossiter–McLaughlin effect to measure the projected obliquity of the LP 261-75 (also known as TOI-1779) system, focusing on the fully convective M dwarf LP 261-75A and the transiting brown dwarf LP 261-75C. This is the first obliquity constraint of a brown dwarf orbiting an M dwarf and the seventh obliquity constraint of a brown dwarf overall. We measure a projected obliquity of 5 10 + 11 degrees and a true obliquity of 1 4 7 + 8 degrees for the system, meaning that the system is well aligned and that the star is rotating very nearly edge-on, with an inclination of 90° ±  11°. The system thus follows along with the trends observed in transiting brown dwarfs around hotter stars, which typically have low obliquities. The tendency for brown dwarfs to be aligned may point to some enhanced obliquity damping in brown dwarf systems, but there is also a possibility that the LP 261-75 system was simply formed aligned. In addition, we note that the brown dwarf's radius (RC =  0.9RJ) is not consistent with the youth of the system or radius trends observed in other brown dwarfs, indicating that LP 261-75C may have an unusual formation history. 
    more » « less
  4. Abstract The “super-puffs” are a population of planets that have masses comparable to that of Neptune but radii similar to Jupiter, leading to extremely low bulk densities (ρp ≲ 0.2 g cm−3) that are not easily explained by standard core accretion models. Interestingly, several of these super-puffs are found in orbits significantly misaligned with their host stars’ spin axes, indicating past dynamical excitation that may be connected to their low densities. Here, we present new Magellan/Planet Finder Spectrograph radial velocity measurements of WASP-193, a late F star hosting one of the least dense transiting planets known to date ( M p = 0.11 2 0.034 + 0.029 M J , R p = 1.31 9 0.048 + 0.056 R J p = 0.060 ± 0.019 g cm−3). We refine the bulk properties of WASP-193 b and use interior structure models to determine that the planet can be explained if it consists of roughly equal amounts of metals and H/He, with a metal fraction ofZ= 0.42. The planet is likely substantially reinflated due to its host star’s evolution, and expected to be actively undergoing mass loss. We also measure the projected stellar obliquity using the Rossiter–McLaughlin effect, finding that WASP-193 b is on an orbit well aligned with the stellar equator, with λ = 1 6 15 + 16 degrees. WASP-193 b is the first Jupiter-sized super-puff on a relatively well-aligned orbit, suggesting a diversity of formation pathways for this population of planets. 
    more » « less
  5. Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius R p = 3.37 0.20 + 0.15 R , mass m p = 16.4 4.1 + 4.1 M , and density ρ p = 2.32 0.37 + 0.38 g cm 3 for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period P sup 430 days and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of m b = 13.3 4.5 + 4.7 M for TOI-2015 b and m c = 6.8 2.3 + 3.5 M for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system. 
    more » « less