skip to main content

This content will become publicly available on February 15, 2024

Title: On the Role of Theory and Modeling in Neuroscience
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1835279 1820631 2002863 1608077
Publication Date:
Journal Name:
The Journal of Neuroscience
Page Range or eLocation-ID:
1074 to 1088
Sponsoring Org:
National Science Foundation
More Like this
  1. The DeepLearningEpilepsyDetectionChallenge: design, implementation, andtestofanewcrowd-sourced AIchallengeecosystem Isabell Kiral*, Subhrajit Roy*, Todd Mummert*, Alan Braz*, Jason Tsay, Jianbin Tang, Umar Asif, Thomas Schaffter, Eren Mehmet, The IBM Epilepsy Consortium◊ , Joseph Picone, Iyad Obeid, Bruno De Assis Marques, Stefan Maetschke, Rania Khalaf†, Michal Rosen-Zvi† , Gustavo Stolovitzky† , Mahtab Mirmomeni† , Stefan Harrer† * These authors contributed equally to this work † Corresponding authors:,,,, ◊ Members of the IBM Epilepsy Consortium are listed in the Acknowledgements section J. Picone and I. Obeid are with Temple University, USA. T. Schaffter is with Sage Bionetworks, USA. E. Mehmet is with the University of Illinois at Urbana-Champaign, USA. All other authors are with IBM Research in USA, Israel and Australia. Introduction This decade has seen an ever-growing number of scientific fields benefitting from the advances in machine learning technology and tooling. More recently, this trend reached the medical domain, with applications reaching from cancer diagnosis [1] to the development of brain-machine-interfaces [2]. While Kaggle has pioneered the crowd-sourcing of machine learning challenges to incentivise data scientists from around the world to advance algorithm and model design, the increasing complexity of problem statements demands of participants to be expert datamore »scientists, deeply knowledgeable in at least one other scientific domain, and competent software engineers with access to large compute resources. People who match this description are few and far between, unfortunately leading to a shrinking pool of possible participants and a loss of experts dedicating their time to solving important problems. Participation is even further restricted in the context of any challenge run on confidential use cases or with sensitive data. Recently, we designed and ran a deep learning challenge to crowd-source the development of an automated labelling system for brain recordings, aiming to advance epilepsy research. A focus of this challenge, run internally in IBM, was the development of a platform that lowers the barrier of entry and therefore mitigates the risk of excluding interested parties from participating. The challenge: enabling wide participation With the goal to run a challenge that mobilises the largest possible pool of participants from IBM (global), we designed a use case around previous work in epileptic seizure prediction [3]. In this “Deep Learning Epilepsy Detection Challenge”, participants were asked to develop an automatic labelling system to reduce the time a clinician would need to diagnose patients with epilepsy. Labelled training and blind validation data for the challenge were generously provided by Temple University Hospital (TUH) [4]. TUH also devised a novel scoring metric for the detection of seizures that was used as basis for algorithm evaluation [5]. In order to provide an experience with a low barrier of entry, we designed a generalisable challenge platform under the following principles: 1. No participant should need to have in-depth knowledge of the specific domain. (i.e. no participant should need to be a neuroscientist or epileptologist.) 2. No participant should need to be an expert data scientist. 3. No participant should need more than basic programming knowledge. (i.e. no participant should need to learn how to process fringe data formats and stream data efficiently.) 4. No participant should need to provide their own computing resources. In addition to the above, our platform should further • guide participants through the entire process from sign-up to model submission, • facilitate collaboration, and • provide instant feedback to the participants through data visualisation and intermediate online leaderboards. The platform The architecture of the platform that was designed and developed is shown in Figure 1. The entire system consists of a number of interacting components. (1) A web portal serves as the entry point to challenge participation, providing challenge information, such as timelines and challenge rules, and scientific background. The portal also facilitated the formation of teams and provided participants with an intermediate leaderboard of submitted results and a final leaderboard at the end of the challenge. (2) IBM Watson Studio [6] is the umbrella term for a number of services offered by IBM. Upon creation of a user account through the web portal, an IBM Watson Studio account was automatically created for each participant that allowed users access to IBM's Data Science Experience (DSX), the analytics engine Watson Machine Learning (WML), and IBM's Cloud Object Storage (COS) [7], all of which will be described in more detail in further sections. (3) The user interface and starter kit were hosted on IBM's Data Science Experience platform (DSX) and formed the main component for designing and testing models during the challenge. DSX allows for real-time collaboration on shared notebooks between team members. A starter kit in the form of a Python notebook, supporting the popular deep learning libraries TensorFLow [8] and PyTorch [9], was provided to all teams to guide them through the challenge process. Upon instantiation, the starter kit loaded necessary python libraries and custom functions for the invisible integration with COS and WML. In dedicated spots in the notebook, participants could write custom pre-processing code, machine learning models, and post-processing algorithms. The starter kit provided instant feedback about participants' custom routines through data visualisations. Using the notebook only, teams were able to run the code on WML, making use of a compute cluster of IBM's resources. The starter kit also enabled submission of the final code to a data storage to which only the challenge team had access. (4) Watson Machine Learning provided access to shared compute resources (GPUs). Code was bundled up automatically in the starter kit and deployed to and run on WML. WML in turn had access to shared storage from which it requested recorded data and to which it stored the participant's code and trained models. (5) IBM's Cloud Object Storage held the data for this challenge. Using the starter kit, participants could investigate their results as well as data samples in order to better design custom algorithms. (6) Utility Functions were loaded into the starter kit at instantiation. This set of functions included code to pre-process data into a more common format, to optimise streaming through the use of the NutsFlow and NutsML libraries [10], and to provide seamless access to the all IBM services used. Not captured in the diagram is the final code evaluation, which was conducted in an automated way as soon as code was submitted though the starter kit, minimising the burden on the challenge organising team. Figure 1: High-level architecture of the challenge platform Measuring success The competitive phase of the "Deep Learning Epilepsy Detection Challenge" ran for 6 months. Twenty-five teams, with a total number of 87 scientists and software engineers from 14 global locations participated. All participants made use of the starter kit we provided and ran algorithms on IBM's infrastructure WML. Seven teams persisted until the end of the challenge and submitted final solutions. The best performing solutions reached seizure detection performances which allow to reduce hundred-fold the time eliptologists need to annotate continuous EEG recordings. Thus, we expect the developed algorithms to aid in the diagnosis of epilepsy by significantly shortening manual labelling time. Detailed results are currently in preparation for publication. Equally important to solving the scientific challenge, however, was to understand whether we managed to encourage participation from non-expert data scientists. Figure 2: Primary occupation as reported by challenge participants Out of the 40 participants for whom we have occupational information, 23 reported Data Science or AI as their main job description, 11 reported being a Software Engineer, and 2 people had expertise in Neuroscience. Figure 2 shows that participants had a variety of specialisations, including some that are in no way related to data science, software engineering, or neuroscience. No participant had deep knowledge and experience in data science, software engineering and neuroscience. Conclusion Given the growing complexity of data science problems and increasing dataset sizes, in order to solve these problems, it is imperative to enable collaboration between people with differences in expertise with a focus on inclusiveness and having a low barrier of entry. We designed, implemented, and tested a challenge platform to address exactly this. Using our platform, we ran a deep-learning challenge for epileptic seizure detection. 87 IBM employees from several business units including but not limited to IBM Research with a variety of skills, including sales and design, participated in this highly technical challenge.« less
  2. Synopsis

    Interest in cephalopods as comparative models in neuroscience, cognition, behavior, and ecology is surging due to recent advances in culture and experimental techniques. Although cephalopods have a long history in research, their use had remained limited due to the challenges of funding work on comparative models, the lack of modern techniques applicable to them, and the small number of labs with the facilities to keep and house large numbers of healthy animals for long periods. Breakthroughs in each of these areas are now creating new interest in cephalopods from researchers who trained and worked in other models, as well as allowing established cephalopod labs to grow and collaborate more widely. This broadening of the field is essential to its long-term health, but also brings with it new and heightened scrutiny from animal rights organizations, federal regulatory agencies, and members of the public. As a community, it is critical that scientists working with cephalopods engage in discussions, studies, and communication that promote high standards for cephalopod welfare. The concept of “social license to operate,” more commonly encountered in industry, recreation, and agriculture, provides a useful lens through which to view proactive steps the cephalopod research community may take to ensuremore »a strong future for our field. In this Perspective, I discuss recent progress in cephalopod ethics and welfare studies, and use the conceptual framework of Social License to Operate to propose a forward-looking, public-facing strategy for the parallel development of welfare-focused best practices and scientific breakthroughs.

    « less
  3. Abstract

    NeuroIS—the methods and knowledge of neuroscience applied to the information systems (IS) domain—has become an established research field within the IS discipline. A key advantage of NeuroIS is its ability to provide insights into human cognition beyond those obtained using behavioural techniques alone. Nevertheless, in neuroscience, there is renewed interest in examining behaviour together with neurophysiological methods to better inform our understanding of neural processes. In this research opinion article, we argue that in the field of NeuroIS, there is an opportunity for hybrid programs of study that combine neurophysiological and behavioural methods in a complementary manner. We outline four strategies for designing complementary neurophysiological and behavioural experiments in a research program: (1) observe the relationship between neural processes and behavioural change; (2) combine neurophysiological and behavioural methods to enhance internal, external, and ecological validity; (3) extend, rather than replicate, experiments based on theory; and (4) use neurophysiological and behavioural experiments together to evaluate IT artefact design. By applying these strategies, researchers can more effectively design programs using complementary neurophysiological and behavioural methods, which, in turn, can help to provide richer insights into the phenomena under study as well as accelerate the advancement of IS knowledge.

  4. Abstract Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual’s social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
  5. The Pearson correlation coefficient squared,r2, is an important tool used in the analysis of neural data to quantify the similarity between neural tuning curves. Yet this metric is biased by trial-to-trial variability; as trial-to-trial variability increases, measured correlation decreases. Major lines of research are confounded by this bias, including those involving the study of invariance of neural tuning across conditions and the analysis of the similarity of tuning across neurons. To address this, we extend an estimator,r̂ER2, that was recently developed for estimating model-to-neuron correlation, in which a noisy signal is compared with a noise-free prediction, to the case of neuron-to-neuron correlation, in which two noisy signals are compared with each other. We compare the performance of our novel estimator to a prior method developed by Spearman, commonly used in other fields but widely overlooked in neuroscience, and find that our method has less bias. We then apply our estimator to demonstrate how it avoids drastic confounds introduced by trial-to-trial variability using data collected in two prior studies (macaque, both sexes) that examined two different forms of invariance in the neural encoding of visual inputs—translation invariance and fill-outline invariance. Our results quantify for the first timemore »the gradual falloff with spatial offset of translation-invariant shape selectivity within visual cortical neuronal receptive fields and offer a principled method to compare invariance in noisy biological systems to that in noise-free models.

    SIGNIFICANCE STATEMENTQuantifying the similarity between two sets of averaged neural responses is fundamental to the analysis of neural data. A ubiquitous metric of similarity, the correlation coefficient, is attenuated by trial-to-trial variability that arises from many irrelevant factors. Spearman recognized this problem and proposed corrected methods that have been extended over a century. We show this method has large asymptotic biases that can be overcome using a novel estimator. Despite the frequent use of the correlation coefficient in neuroscience, consensus on how to address this fundamental statistical issue has not been reached. We provide an accurate estimator of the correlation coefficient and apply it to gain insight into visual invariance.

    « less