Genuinely new discovery transcends existing knowledge. Despite this, many analyses in systems neuroscience neglect to test new speculative hypotheses against benchmark empirical facts. Some of these analyses inadvertently use circular reasoning to present existing knowledge as new discovery. Here, I discuss that this problem can confound key results and estimate that it has affected more than three thousand studies in network neuroscience over the last decade. I suggest that future studies can reduce this problem by limiting the use of speculative evidence, integrating existing knowledge into benchmark models, and rigorously testing proposed discoveries against these models. I conclude with a summary of practical challenges and recommendations.
more »
« less
On the Role of Theory and Modeling in Neuroscience
In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative models and theories each play a distinct role in defining and bridging levels of abstraction, will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.
more »
« less
- PAR ID:
- 10398889
- Date Published:
- Journal Name:
- The Journal of Neuroscience
- Volume:
- 43
- Issue:
- 7
- ISSN:
- 0270-6474
- Page Range / eLocation ID:
- 1074 to 1088
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Amodio argues that social cognition research has for many decades relied on imprecise dual-process models that build on questionable assumptions about how people learn and represent information. He presents an alternative framework for explaining social behavior as the product of multiple dissociable memory systems, based on the idea that cognitive neuroscience has revealed evidence for the existence of separate systems underlying distinct forms of learning and memory. Although we applaud Amodio’s attempt to build bridges between social cognition, learning psychology, and neuroscience, we believe that his interactive memory systems model rests on shaky grounds. In our view, the most significant limitation is the idea that behavioral dissociations provide strong evidence for multiple memory systems with functionally distinct learning mechanisms. A major problem with this idea is that behavioral dissociations can arise from processes during the retrieval and use of stored information, which does not require any assumptions about distinct memory systems or distinct forms of learning.more » « less
-
null (Ed.)Abstract Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual’s social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.more » « less
-
Achieving consensus is a challenging and ubiquitous problem in distributed systems that is only made harder by the introduction of malicious byzantine servers. While significant effort has been devoted to the benign and byzantine failure models individually, no prior work has considered the mechanized verification of both in a generic way. We claim this is due to the lack of an appropriate abstraction that is capable of representing both benign and byzantine consensus without either losing too much detail or becoming impractically complex. We build on recent work on the atomic distributed object model to fill this void with a novel abstraction called AdoB. In addition to revealing important insights into the essence of consensus, this abstraction has practical benefits for easing distributed system verification. As a case study, we proved safety and liveness properties for AdoB in Coq, which are the first such mechanized proofs to handle benign and byzantine consensus in a unified manner. We also demonstrate that AdoB faithfully models real consensus protocols by proving it is refined by standard network-level specifications of Fast Paxos and a variant of Jolteon.more » « less
-
null (Ed.)Abstraction in language has critical implications for memory, judgment, and learning and can provide an important window into a person’s cognitive abstraction level. The linguistic category model (LCM) provides one well-validated, human-coded approach to quantifying linguistic abstraction. In this article, we leverage the LCM to construct the Syntax-LCM, a computer-automated method which quantifies syntax use that indicates abstraction levels. We test the Syntax-LCM’s accuracy for approximating hand-coded LCM scores and validate that it differentiates between text intended for a distal or proximal message recipient (previously linked with shifts in abstraction). We also consider existing automated methods for quantifying linguistic abstraction and find that the Syntax-LCM most consistently approximates LCM scores across contexts. We discuss practical and theoretical implications of these findings.more » « less