skip to main content


Title: Cascade degradation and upcycling of polystyrene waste to high-value chemicals
Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl 3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits.  more » « less
Award ID(s):
1752611
NSF-PAR ID:
10398899
Author(s) / Creator(s):
; ; ; ; ; ;  ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
34
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  2. Abstract

    Polystyrene (PS) is one of the least recycled large‐volume commodity plastics due to bulkiness of foam products and associated contaminants. PS recycling is also severely hampered by the lack of financial incentive, limited versatility, and poor selectivity of existing methods. To this end, herein we report a thermochemical recycling strategy of “degradation‐upcycling” to synthesize a library of high‐value aromatic chemicals from PS wastes with high versatility and selectivity. Two cascade reactions are selected to first degrade PS to benzene under mild temperatures, followed by the derivatization thereof utilizing a variety of acyl/alkyl and sulfinyl chloride additives. To demonstrate the versatility, nine ketones and sulfides of cosmetic and pharmaceutical relevance were prepared, including propiophenone, benzophenone, and diphenyl sulfide. The approach is also amenable to sophisticated upcycling reaction designs and can produce desired products stepwise. The facile and versatile approach will provide a scalable and profitable methodology for upcycling PS waste into value‐added chemicals.

     
    more » « less
  3. Abstract

    While various plastic waste management practices are demonstrated to result in materials with similar properties, morphological features of plastic waste are often lost after recycling/upcycling. Particularly, synthetic textiles are a severely underutilized waste stream that contains built‐in value stemming from their woven architectures. This work demonstrates a simple upcycling strategy to convert polypropylene‐based (PP) woven fabrics to carbon fiber mats through direct pyrolysis for direct use in various end applications without need of additional processing steps, distinct from prior works converting plastic waste to carbon‐based additives. The retention of material properties and architectures, taking advantage of the inherent value with initial product manufacturing, is investigated, with optimal conditions resulting in consistent high carbon yields. Moreover, the textile‐derived carbon shows exceptional Joule heating performance, which can be employed in various heating applications, resulting in reduced energy consumption compared to conventional heating. Furthermore, decoration of fabric‐derived carbon with metal nanoparticles is demonstrated through electroplating, leading to altered surface functionality and further enhanced Joule heating performance. This work introduces a scalable method for upcycling of plastic waste to functional carbons that can completely retain initial material architectures with controlled shrinkage, providing a viable strategy for generating value‐added products toward electrification of heating processes.

     
    more » « less
  4. Environmental contamination with bisphenol A (BPA), produced via degradation of plastic waste, constitutes a major hazard for human health due to the ability of BPA to bind to estrogen receptors and thereby induce hormonal imbalances. Unfortunately, BPA cannot be degraded to a “safe” material without breaking C–C σ-bonds, and existing methods required to break these bonds employ petroleum-derived chemicals and environmentally-harmful metal ions. Therefore, there is an urgent need to develop new “green” methods to break BPA into monoaryl compounds without the use of such reagents and, ideally, convert those monoaryls into valuable materials that can be productively utilized instead of being discarded as chemical waste. Herein we report a new mechanism by which O , O ′-dimethyl bisphenol A (DMBPA), obtained from BPA-containing plastic via low-temperature recycling, undergoes C–C σ-bond cleavage via thiocracking, a reaction with elemental sulfur at temperatures lower than those used in many thermal plastic recycling techniques ( e.g. , <325 °C). Mechanistic analyses and microstructural characterization of the DMBPA-derived materials produced by thiocracking elucidated multiple subunits comprising monoaryl species. Impressively, analyses of recoverable organics revealed that >95% of DMBPA had been broken down into monoaryl components. Furthermore, the DMBPA–sulfur composite produced by thiocracking (BC90) exhibited compressive strength (∼20 MPa) greater than those of typical Portland cements. Consequently, this new thiocracking method creates the ability to destroy the estrogen receptor-binding components of BPA wastes using greener techniques and, simultaneously, to produce a mechanically-robust composite material that represents a sustainable alternative to Portland cements. 
    more » « less
  5. Polyvinyl chloride (PVC) containing municipal solid waste (MSW) streams are difficult to recycle and mostly landfilled due to various detrimental effects PVC causes to waste recycling. In this work, a single-step upcycling of PVC-containing commingled wastes in tetrahydrofuran was investigated using cellulose, PVC, polyethylene (PE), polypropylene (PP), and polystyrene (PS) to model the wastes. During the co-conversion, in-situ produced HCl derived from PVC decomposition acted as an acid catalyst to selectively decompose cellulose into liquid mainly containing levoglucosan (LGA) and furfural. It was also found that the presence of PE, PP, and PS in the mixture synergistically enhanced the cellulose-derived monomer productions and increased the reaction rate for producing the monomers by suppressing secondary reactions of HCl in the solvent. The maximum LGA yield from co-conversion of cellulose, PVC, and PS was 35.4% after a 5 min reaction compared to the 31.7% obtained without PS in the mixture. In addition to converting cellulose to chemicals, PVC-derived polyaromatics and partly decomposed PE, PP, and PS were recovered as solids. The dechlorinated solids had higher heating values up to 46.11 MJ/kg, achieved by co-converting cellulose, PVC, and PP. When used as oil absorbents in water, the solid recovered from converting cellulose, PVC, and PE mixture showed the highest absorption capability. Overall, the presented approach offers a promising way for upcycling PVC-containing wastes in which PVC properties and its molecular structure are leveraged to enhance the conversion. 
    more » « less