skip to main content


This content will become publicly available on November 2, 2024

Title: Direct Upcycling of Woven Polypropylene Fabrics to Carbon‐Based Joule Heaters
Abstract

While various plastic waste management practices are demonstrated to result in materials with similar properties, morphological features of plastic waste are often lost after recycling/upcycling. Particularly, synthetic textiles are a severely underutilized waste stream that contains built‐in value stemming from their woven architectures. This work demonstrates a simple upcycling strategy to convert polypropylene‐based (PP) woven fabrics to carbon fiber mats through direct pyrolysis for direct use in various end applications without need of additional processing steps, distinct from prior works converting plastic waste to carbon‐based additives. The retention of material properties and architectures, taking advantage of the inherent value with initial product manufacturing, is investigated, with optimal conditions resulting in consistent high carbon yields. Moreover, the textile‐derived carbon shows exceptional Joule heating performance, which can be employed in various heating applications, resulting in reduced energy consumption compared to conventional heating. Furthermore, decoration of fabric‐derived carbon with metal nanoparticles is demonstrated through electroplating, leading to altered surface functionality and further enhanced Joule heating performance. This work introduces a scalable method for upcycling of plastic waste to functional carbons that can completely retain initial material architectures with controlled shrinkage, providing a viable strategy for generating value‐added products toward electrification of heating processes.

 
more » « less
Award ID(s):
2239408
NSF-PAR ID:
10472578
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Sustainable Systems
ISSN:
2366-7486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Responsible disposal of vehicles at the end of life is a pressing environmental concern. In particular, waste plastic forms the largest proportion of non-recycled waste material from light-duty vehicles, and often ends up in a landfill. Here we report the upcycling of depolluted, dismantled and shredded end-of-life waste plastic into flash graphene using flash Joule heating. The synthetic process requires no separation or sorting of plastics and uses no solvents or water. We demonstrate the practical value of the graphene as a re-inforcing agent in automotive polyurethane foam composite, where its introduction leads to improved tensile strength and low frequency noise absorption properties. We demonstrate process continuity by upcycling the resulting foam composite back into equal-quality flash graphene. A prospective cradle-to-gate life cycle assessment suggests that our method may afford lower cumulative energy demand and water use, and a decrease in global warming potential compared to traditional graphene synthesis methods.

     
    more » « less
  2. The utilization of multifunctional composite materials presents significant advantages in terms of system efficiency, cost-effectiveness, and miniaturization, making them highly valuable for a wide range of industrial applications. One approach to harness the multifunctionality of carbon fiber reinforced polymer (CFRP) is to integrate it with a secondary material to form a hybrid composite. In our previous research, we explored the use of carbonaceous material derived from coconut shells as a sustainable alternative to inorganic fillers, aiming to enhance the out-of-plane mechanical performance of CFRP. In this study, our focus is to investigate the influence of carbonized coconut shell particles on the non-structural properties of CFRP, specifically electromagnetic interference (EMI) shielding, thermal stability, and water absorption resistance. The carbonized material was prepared by thermal processing at 400 °C. Varying proportions of carbonized material, ranging from 1% to 5% by weight, were thoroughly mixed with epoxy resin to form the matrix used for impregnating woven carbon fabric with a volume fraction of 29%. Through measurements of scattering parameters, we found that the hybrid composites with particle loadings up to 3% exhibited EMI shielding effectiveness suitable for industrial applications. Also, incorporating low concentrations of carbonized particle to CFRP enhances the thermal stability of hybrid CFRP composites. However, the inclusion of carbonized particle to CFRP has a complex effect on the glass transition temperature. Even so, the hybrid composite with 2% particle loading exhibits the highest glass transition temperature and lowest damping factor among the tested variations. Furthermore, when subjected to a 7-day water immersion test, hybrid composites with 3% or less amount of carbonized particle showed the least water absorption. The favorable outcome can be attributed to good interfacial bonding at the matrix/fiber interface. Conversely, at higher particle concentrations, aggregation of particles and formation of interfacial and internal pores was observed, ultimately resulting in deteriorated measured properties. The improved non-structural functionalities observed in these biocomposites suggest the potential for a more sustainable and cost-effective alternative to their inorganic-based counterparts. This advancement in multifunctional composites could pave the way for enhanced applications of biocomposites in various industries.

     
    more » « less
  3. Abstract

    Advances in nanoscience have enabled the synthesis of nanomaterials, such as graphene, from low‐value or waste materials through flash Joule heating. Though this capability is promising, the complex and entangled variables that govern nanocrystal formation in the Joule heating process remain poorly understood. In this work, machine learning (ML) models are constructed to explore the factors that drive the transformation of amorphous carbon into graphene nanocrystals during flash Joule heating. An XGBoost regression model of crystallinity achieves anr2score of 0.8051 ± 0.054. Feature importance assays and decision trees extracted from these models reveal key considerations in the selection of starting materials and the role of stochastic current fluctuations in flash Joule heating synthesis. Furthermore, partial dependence analyses demonstrate the importance of charge and current density as predictors of crystallinity, implying a progression from reaction‐limited to diffusion‐limited kinetics as flash Joule heating parameters change. Finally, a practical application of the ML models is shown by using Bayesian meta‐learning algorithms to automatically improve bulk crystallinity over many Joule heating reactions. These results illustrate the power of ML as a tool to analyze complex nanomanufacturing processes and enable the synthesis of 2D crystals with desirable properties by flash Joule heating.

     
    more » « less
  4. Abstract Background

    The increasing prevalence of plastic waste combined with the inefficiencies of mechanical recycling has inspired interest in processes that can convert these waste streams into value-added biomaterials. To date, the microbial conversion of plastic substrates into biomaterials has been predominantly limited to polyhydroxyalkanoates production. Expanding the capabilities of these microbial conversion platforms to include a greater diversity of products generated from plastic waste streams can serve to promote the adoption of these technologies at a larger scale and encourage a more sustainable materials economy.

    Results

    Herein, we report the development of a new strain ofPseudomonasbacteria capable of converting depolymerized polyethylene into high value bespoke recombinant protein products. Using hexadecane, a proxy for depolymerized polyethylene, as a sole carbon nutrient source, we optimized media compositions that facilitate robust biomass growth above 1 × 109 cfu/ml, with results suggesting the benefits of lower hydrocarbon concentrations and the use of NH4Cl as a nitrogen source. We genomically integrated recombinant genes for green fluorescent protein and spider dragline-inspired silk protein, and we showed their expression inPseudomonas aeruginosa, reaching titers of approximately 10 mg/L when hexadecane was used as the sole carbon source. Lastly, we demonstrated that chemically depolymerized polyethylene, comprised of a mixture of branched and unbranched alkanes, could be converted into silk protein byPseudomonas aeruginosaat titers of 11.3 ± 1.1 mg/L.

    Conclusion

    This work demonstrates a microbial platform for the conversion of a both alkanes and plastic-derived substrates to recombinant, protein-based materials. The findings in this work can serve as a basis for future endeavors seeking to upcycle recalcitrant plastic wastes into value-added recombinant proteins.

     
    more » « less
  5. Plastic waste represents one of the most urgent environmental challenges facing humankind. Upcycling has been proposed to solve the low profitability and high market sensitivity of known recycling methods. Existing upcycling methods operate under energy-intense conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. Herein, we report a tandem degradation-upcycling strategy to exploit high-value chemicals from polystyrene (PS) waste with high selectivity. We first degrade PS waste to aromatics using ultraviolet (UV) light and then valorize the intermediate to diphenylmethane. Low-cost AlCl 3 catalyzes both the reactions of degradation and upcycling at ambient temperatures under atmospheric pressure. The degraded intermediates can advantageously serve as solvents for processing the solid plastic wastes, forming a self-sustainable circuitry. The low-value-input and high-value-output approach is thus substantially more sustainable and economically viable than conventional thermal processes, which operate at high-temperature, high-pressure conditions and use precious-metal catalysts, but produce low-value oligomers, monomers, and common aromatics. The cascade strategy is resilient to impurities from plastic waste streams and is generalizable to other high-value chemicals (e.g., benzophenone, 1,2-diphenylethane, and 4-phenyl-4-oxo butyric acid). The upcycling to diphenylmethane was tested at 1-kg laboratory scale and attested by industrial-scale techno-economic analysis, demonstrating sustainability and economic viability without government subsidies or tax credits. 
    more » « less