skip to main content

This content will become publicly available on August 1, 2023

Title: Using Prompted Reflective Journaling to Understand Nontraditional Students in Engineering
This research paper is a study of the support needs of nontraditional students in engineering (NTSE). Nontraditional students in engineering are one segment of the student body that has traditionally not been a part of the conversation in engineering education– those students who do not go through a typical four-year college degree largely at a residential campus. It is only by better understanding the range of issues that NTSE face that we will be able to design interventions and support systems that can assist them. Recent work in engineering education particularly argues that co-curricular support is a critical factor in student success as it effects curricular progress but there has been no work looking specifically at co-curricular support for NTSE and their retention and persistence. The population of NTSE is increasing across campuses as more students take on jobs to support their education and as those in the workforce return to complete their education. It is imperative that higher educational systems understand how to serve the needs of these students better. Although there are a range of ways in which nontraditional students (NTS) are defined, the NCES has proposed a comprehensive definition that includes enrollment criteria, financial and family status, and high more » school graduation status. Overall, the seven characteristics specifically associated with NTS are: (1) Delayed enrollment by a year or more after high school, (2) attended part-time, (3) having dependents, (4) being a single parent, (5) working full time while enrolled, (6) being financially independent from parents, and (7) did not receive a standard high school diploma. We ground our research in the Model of Co-Curricular Support (MCCS) which suggests it is the role of the institution to provide the necessary support for integration. If students are aware and have access to resources, which lead to their success, then they will integrate into the university environment at higher rates than those students who are not aware and have access to those resources. This research study focuses on answering one research question: How do NTSE engage with co-curricular supports as they progress through their degree programs? To answer this question, we recruited 11 NTSE with a range of nontraditional characteristics to complete prompted reflective journaling assignments five times throughout the Fall 2021 semester. Qualitative results showcase the nuanced lives of NTSE as they pursue their engineering degrees. In particular, results indicate students interact with faculty, classmates, and friends/peers the most, and only interact with advising when required. Students rarely reach out to larger student support for help or are involved with campus or other events happening. Classmate and friend/peer interactions are the most positive, while interactions with faculty had the largest negative outcomes. « less
Authors:
;
Award ID(s):
2044347
Publication Date:
NSF-PAR ID:
10398928
Journal Name:
2022 ASEE Annual Conference & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. This IUSE: Engaged Student Learning project will conduct a study of nontraditional students in engineering (NTSE) to better understand how to support their co-curricular activities so that they are better able to persist with engineering as a discipline. Nontraditional students (NTS) are increasing both as a proportion of undergraduates and in overall numbers. This is especially the case within engineering as people in the workforce return to complete their degrees or are looking to finish school on a part-time basis. Online offerings across higher education institutions has further accelerated this trend. However, there is little research into engineering students that possess characteristics associated with nontraditional students. Engineering as an educational enterprise has been designed to support a traditional four-year residential degree (e.g. group projects, study halls) and NTS are disadvantaged. Prior work has demonstrated better effectiveness for teaching and pedagogy if co-curricular activities are supported and if proper awareness and access to student support mechanisms are in place students are more likely to be successful. Therefore, we need to understand the efficacy of support structures for nontraditional characteristics. The need for this proposed work is critical within engineering as the discipline traditionally has a low persistence and retention rate andmore »this is also the case for NTSE. This work is especially pertinent in the current climate where NTS are additionally burdened due to COVID-19 – there is less support in time of greater need.« less
  2. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine tomore »improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).« less
  3. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine tomore »improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).« less
  4. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time managementmore »and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering.« less
  5. Wright College, an open-access community college in northwest Chicago, is an independently accredited institution in the City Colleges of Chicago (CCC) system. Wright is federally recognized Hispanic-Serving Institution (HSI) with the largest enrollment of Hispanic students in Illinois. In 2015 Wright piloted a selective guaranteed admission program to the Grainer College of Engineering at the University of Illinois at Urbana-Champaign (UIUC). Students in the Engineering Pathways (EP) program follow a cohort system with rigorous curriculum aligned to UIUC. From this pilot Wright built programmatic frameworks (one-stop intentional advising; mandatory tutoring, near-peer, faculty and professional mentoring; and access to professional organizations) to support EP students. Initial results were positive: 89% transfer rate and 89% bachelor’s degree completion. Building from the EP frameworks, Wright obtained a National Science Foundation (NSF) HSI research grant to expand programs to non-pathway students. Through the grant, Building Bridges into Engineering and Computer Science, the college developed assessment tools, increased the number of 4-year partnerships, and designed and implemented an Engineering Summer Bridge with curriculum contextualized for the needs of the Near-STEM ready students. These students need one to four semesters of Math remediation before moving into the EP. The college measured the Bridge participants' success throughmore »analysis of Math proficiency before and after the Bridge, professional identity (sense of belonging) and self-efficacy (the belief that the students will succeed as engineers). Surveys and case study interviews are being supplemented with retention, persistence, transfer, associate and bachelor degree completion rates, and time for degree completion. The key research question is the correlation of these data with self-efficacy and professional identity measures. Preliminary Results: 1) Sixty percent (60%) of the Bridge participants eliminated the remedial Math requirement completely. (Increased Math proficiency) 2) Engineering admission and enrollment doubled. 4) Increased institutionalized collaborations: the creation of a more programmatic admission, advising, transfer, rigorous curriculum, and other student support services within the College. 5) Increased partnerships with 4-year transfer institutions resulting in the expansion of guaranteed/dual admissions programs with scholarships, paid research experience, dual advising, and students transferring as juniors. 5) Increased diversity in Engineering and Computer Science student population. Wright will share an overview of the Building Bridges into Engineering and Computer Science project, research design, expanded practices, assessments and insights from the development and implementation of this program. The developed frameworks will be applied to provide ALL students at Wright, and at CCC equitable Engineering and Computer Science education.« less