skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automated Coding of Political Campaign Advertisement Videos: An Empirical Validation Study
Abstract Video advertisements, either through television or the Internet, play an essential role in modern political campaigns. For over two decades, researchers have studied television video ads by analyzing the hand-coded data from the Wisconsin Advertising Project and its successor, the Wesleyan Media Project (WMP). Unfortunately, manually coding more than a hundred of variables, such as issue mentions, opponent appearance, and negativity, for many videos is a laborious and expensive process. We propose to automatically code campaign advertisement videos. Applying state-of-the-art machine learning methods, we extract various audio and image features from each video file. We show that our machine coding is comparable to human coding for many variables of the WMP datasets. Since many candidates make their advertisement videos available on the Internet, automated coding can dramatically improve the efficiency and scope of campaign advertisement research. Open-source software package is available for implementing the proposed methodology.  more » « less
Award ID(s):
2148928
PAR ID:
10399040
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Political Analysis
ISSN:
1047-1987
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miesenberger K., Manduchi R. (Ed.)
    Automatic subtitles are widely used for subtitling television and online videos. Some include punctuation while others do not. Our study with 21 participants watching subtitled videos found that viewers reported that punctuation improves the “readability” experience for deaf, hard of hearing, and hearing viewers, regardless of whether it was generated via ASR or humans. Given that automatic subtitles have become widely integrated into online video and television programs, and that nearly 20% of television viewers in US or UK use subtitles, there is evidence that supports punctuation in subtitles has the potential to improve the viewing experience for a significant percentage of the all television viewers, including people who are deaf, hard of hearing, and hearing. 
    more » « less
  2. With the advancement and dominant service of Internet videos, the content-based video deduplication system becomes an essential and dependent infrastructure for Internet video service. However, the explosively growing video data on the Internet challenges the system design and implementation for its scalability in several ways. (1) Although the quantization-based indexing techniques are effective for searching visual features at a large scale, the costly re-training over the complete dataset must be done periodically. (2) The high-dimensional vectors for visual features demand increasingly large SSD space, degrading I/O performance. (3) Videos crawled from the Internet are diverse, and visually similar videos are not necessarily the duplicates, increasing deduplication complexity. (4) Most videos are edited ones. The duplicate contents are more likely discovered as clips inside the videos, demanding processing techniques with close attention to details. To address above-mentioned issues, we propose Maze, a full-fledged video deduplication system. Maze has an ANNS layer that indexes and searches the high dimensional feature vectors. The architecture of the ANNS layer supports efficient reads and writes and eliminates the data migration caused by re-training. Maze adopts the CNN-based feature and the ORB feature as the visual features, which are optimized for the specific video deduplication task. The features are compact and fully reside in the memory. Acoustic features are also incorporated in Maze so that the visually similar videos but having different audio tracks are recognizable. A clip-based matching algorithm is developed to discover duplicate contents at a fine granularity. Maze has been deployed as a production system for two years. It has indexed 1.3 billion videos and is indexing ~800 thousand videos per day. For the ANNS layer, the average read latency is 4 seconds and the average write latency is at most 4.84 seconds. The re-training over the complete dataset is no longer required no matter how many new data sets are added, eliminating the costly data migration between nodes. Maze recognizes the duplicate live streaming videos with both the similar appearance and the similar audio at a recall of 98%. Most importantly, Maze is also cost-effective. For example, the compact feature design helps save 5800 SSDs and the computation resources devoted to running the whole system decrease to 250K standard cores per billion videos. 
    more » « less
  3. Annotating camera poses on dynamic Internet videos at scale is critical for advancing fields like realistic video generation and simulation. However, collecting such a dataset is difficult, as most Internet videos are unsuitable for pose estimation. Furthermore, annotating dynamic Internet videos present significant challenges even for state-of-the-art methods. In this paper, we introduce DynPose-100K, a large-scale dataset of dynamic Internet videos annotated with camera poses. Our collection pipeline addresses filtering using a carefully combined set of task-specific and generalist models. For pose estimation, we combine the latest techniques of point tracking, dynamic masking, and structure-from-motion to achieve improvements over the state-of-the-art approaches. Our analysis and experiments demonstrate that DynPose-100K is both large-scale and diverse across several key attributes, opening up avenues for advancements in various downstream applications 
    more » « less
  4. Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing. 
    more » « less
  5. We present a database for automatic understanding of Social Engagement in MultiParty Interaction (SEMPI). Social engagement is an important social signal characterizing the level of participation of an interlocutor in a conversation. Social engagement involves maintaining attention and establishing connection and rapport. Machine understanding of social engagement can enable an autonomous agent to better understand the state of human participation and involvement to select optimal actions in human-machine social interaction. Recently, video-mediated interaction platforms, e.g., Zoom, have become very popular. The ease of use and increased accessibility of video calls have made them a preferred medium for multiparty conversations, including support groups and group therapy sessions. To create this dataset, we first collected a set of publicly available video calls posted on YouTube. We then segmented the videos by speech turn and cropped the videos to generate single-participant videos. We developed a questionnaire for assessing the level of social engagement by listeners in a conversation probing the relevant nonverbal behaviors for social engagement, including back-channeling, gaze, and expressions. We used Prolific, a crowd-sourcing platform, to annotate 3,505 videos of 76 listeners by three people, reaching a moderate to high inter-rater agreement of 0.693. This resulted in a database with aggregated engagement scores from the annotators. We developed a baseline multimodal pipeline using the state-of-the-art pre-trained models to track the level of engagement achieving the CCC score of 0.454. The results demonstrate the utility of the database for future applications in video-mediated human-machine interaction and human-human social skill assessment. Our dataset and code are available at https://github.com/ihp-lab/SEMPI. 
    more » « less