skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Corpus-Guided Contrast Sets for Morphosyntactic Feature Detection in Low-Resource English Varieties
The study of language variation examines how language varies between and within different groups of speakers, shedding light on how we use language to construct identities and how social contexts affect language use. A common method is to identify instances of a certain linguistic feature - say, the zero copula construction - in a corpus, and analyze the feature’s distribution across speakers, topics, and other variables, to either gain a qualitative understanding of the feature’s function or systematically measure variation. In this paper, we explore the challenging task of automatic morphosyntactic feature detection in low-resource English varieties. We present a human-in-the-loop approach to generate and filter effective contrast sets via corpus-guided edits. We show that our approach improves feature detection for both Indian English and African American English, demonstrate how it can assist linguistic research, and release our fine-tuned models for use by other researchers.  more » « less
Award ID(s):
2042939 1845576
PAR ID:
10399153
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the first workshop on NLP applications to field linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose:We examined which measures of complexity are most informative when studying language produced in interaction. Specifically, using these measures, we explored whether native and nonnative speakers modified the higher level properties of their production beyond the acoustic–phonetic level based on the language background of their conversation partner. Method:Using a subset of production data from the Wildcat Corpus that used Diapix, an interactive picture matching task, to elicit production, we compared English language production at the dyad and individual level across three different pair types: eight native pairs (English–English), eight mixed pairs (four English–Chinese and four English–Korean), and eight nonnative pairs (four Chinese–Chinese and four Korean–Korean). Results:At both the dyad and individual levels, native speakers produced longer and more clausally dense speech. They also produced fewer silent pauses and fewer linguistic mazes relative to nonnative speakers. Speakers did not modify their production based on the language background of their interlocutor. Conclusions:The current study examines higher level properties of language production in true interaction. Our results suggest that speakers' productions were determined by their own language background and were independent of that of their interlocutor. Furthermore, these demonstrated promise for capturing syntactic characteristics of language produced in true dialogue. Supplemental Material:https://doi.org/10.23641/asha.24712956 
    more » « less
  2. Adpositions are frequent markers of semantic relations, but they are highly ambiguous and vary significantly from language to language. Moreover, there is a dearth of annotated corpora for investigating the cross-linguistic variation of adposition semantics, or for building multilingual disambiguation systems. This paper presents a corpus in which all adpositions have been semantically annotated in Mandarin Chinese; to the best of our knowledge, this is the first Chinese corpus to be broadly annotated with adposition semantics. Our approach adapts a framework that defined a general set of supersenses according to ostensibly language-independent semantic criteria, though its development focused primarily on English prepositions (Schneider et al., 2018). We find that the supersense categories are well-suited to Chinese adpositions despite syntactic differences from English. On a Mandarin translation of The Little Prince, we achieve high inter-annotator agreement and analyze semantic correspondences of adposition tokens in bitext. 
    more » « less
  3. While data collection early in the Americanist tradition included texts as part of the Boasian triad, later developments in the generative tradition moved away from narratives. With a resurgence of attention to texts in both linguistic theory and language documentation, the literature on methodologies is growing (i.e., Chelliah 2001, Chafe 1980, Burton & Matthewson 2015). We outline our approach to collecting Chickasaw texts in what we call a ‘narrative bootcamp.’ Chickasaw is a severely threatened language and no longer in common daily use. Facilitating narrative collection with elder fluent speakers is an important goal, as is the cultivation of second language speakers and the training of linguists and tribal language professionals. Our bootcamps meet these goals. Moreover, we show many positive outcomes to this approach, including a positive sense of language use and ‘fun’ voiced by the elders, the corpus expansion that occurs by collecting and processing narratives onsite in the workshop, and field methods training for novices. Importantly, we find the sparking of personal recollections facilitates the collection of heretofore unrecorded narrative genres in Chickasaw. This approach offers an especially fruitful way to build and expand a text corpus for small communities of highly endangered languages. 
    more » « less
  4. Abstract Issues of intelligibility may arise amongst English learners when acquiring new words and phrases in North American academic settings, perhaps in part due to limited linguistic data available to the learner for understanding language use patterns. To this end, this paper examines the effects of Data‐Driven Learning for Pronunciation (DDLfP) on lexical stress and prominence in the US academic context. 65 L2 English learners in North American universities completed a diagnostic and pretest with listening and speaking items before completing four online lessons and a posttest on academic words and formulas (i.e., multi‐word sequences). Experimental group participants (n = 40) practiced using an audio corpus of highly proficient L2 speakers while comparison group participants (n = 25) were given teacher‐created pronunciation materials. Logistic regression results indicated that the group who used the corpus significantly increased their recognition of prominence in academic formulas. In the spoken tasks, both groups improved in their lexical stress pronunciation, but only the DDLfP learners improved their production of prominence in academic formulas. Learners reported that they valued DDLfP efforts for pronunciation learning across contexts and speakers. Findings have implications for teachers of L2 pronunciation and support the use of corpora for language teaching and learning. 
    more » « less
  5. null (Ed.)
    Abstract It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. We give an overview of the content of the corpus, review recent work using the corpus, and release the data. 
    more » « less