skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate Projection of Tropical Cyclone Lifetime in the Western North Pacific Basin
Abstract In this study, the potential changes in tropical cyclone (TC) lifetime in the western North Pacific basin are examined for different future climates. Using homogeneous 9-km-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model, we show that TC-averaged lifetime displays insignificant change under both low and high greenhouse gas concentration scenarios. However, more noticeable changes in the tails of TC lifetime statistics are captured in our downscaling simulations, with more frequent long-lived TCs (lifetime of 8–11 days) and less short-lived TCs (lifetime of 3–5 days). Unlike present-day simulations, it is found that the correlation between TC lifetime and the Niño index is relatively weak and insignificant in all future downscaling simulations, thus offering little explanation for these changes in TC lifetime statistics based on El Niño–Southern Oscillation. More detailed analyses of TC track distribution in the western North Pacific basin reveal, nevertheless, a noticeable shift of TC track patterns toward the end of the twenty-first century. Such a change in TC track climatology results in an overall longer duration of TCs over the open ocean, which is consistent across future scenarios and periods examined in this study. This shift in the TC track pattern is ultimately linked to changes in the western North Pacific subtropical high, which retreats to the south during July and to the east during August–September. The results obtained in this study provide new insights into how large-scale circulations can affect TC lifetime in the western North Pacific basin in warmer climates. Significance StatementUsing high-resolution dynamical downscaling with the Weather Research and Forecasting (WRF) Model under low- and high-emission scenarios, this study shows that the basin-averaged tropical cyclone (TC) lifetime in the western North Pacific (WNP) basin has no noticeable change under both warmer climate scenarios, despite an overall increase in TC maximum intensity. However, the tails of the TC lifetime distribution display significant changes, with more long-lived (6–20 days) TCs but less short-lived (3–5 days) TCs in the future. These changes in TC lifetime statistics are caused by the shift of the North Pacific subtropical high, which alters large-scale steering flows and TC track patterns. These results help explain why previous studies on TC lifetime projections have been inconclusive in the WNP basin and provide new insights into how large-scale circulations can modulate TC lifetime in a warmer climate.  more » « less
Award ID(s):
2309929
PAR ID:
10558859
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
1
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 181-201
Size(s):
p. 181-201
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seasonal predictions of tropical cyclone (TC) landfalls are challenging because seasonal landfall count not only depends on the number and spatial distribution of TC genesis, but also whether those TCs are steered toward land or not. Past studies have separately examined genesis and landfall as a function of large-scale ocean and atmospheric environmental conditions. Here, we introduce a practical statistical framework for estimating the seasonal count of TC landfalls as the product of a Poisson model for seasonal TC genesis and a logistic model for landfall probability. We compute spatial variations in TC landfall and genesis by decomposing TC activity in the western North Pacific (WNP) basin into 10° × 10° bins, then identify coherent regions where El Niño–Southern Oscillation (ENSO) and the western extent of the Pacific subtropical high (WPSH) have significant influences on seasonal landfall count. Our framework shows that ENSO and the WPSH are weakly related to basinwide landfalls but strongly related to regional genesis and landfall probability. ENSO modulates the zonal distribution of TC genesis, consistent with past work, whereas the WPSH modulates the meridional distribution of landfall probability due to variations in steering flow associated with the Pacific subtropical high. These spatial patterns result in four coherent subregions of the WNP basin that define seasonal landfall variations: landfall count increases in the southwestern WNP during a positive WPSH and La Niña, the south-central WNP during a positive WPSH and El Niño, the eastern WNP during a negative WPSH and El Niño, and the northern WNP during a negative WPSH and La Niña. 
    more » « less
  2. Poleward migration is an interesting phenomenon regarding the shift of Tropical Cyclones (TCs) towards higher latitudes. As climate warms, TCs’ intensification is promoted, and yet over certain oceans, TCs may also migrate poleward into colder waters. To what extent this poleward shift can impact future TC’s intensification is unclear, and a quantitative understanding of these competing processes is lacking. Through investigating one of the most likely TC basins to experience poleward migration, the western North Pacific (WNP), here we explore the issue. Potential Intensity (PI, TC’s intensification upper bound) along TC’s intensification locations (from genesis to the lifetime maximum intensity location) are analysed. We find that poleward migration can partially cancel global warming’s positive impact on future WNP TC’s intensification. With poleward migration, the PI increasing trend slope is gentler. We estimate that poleward migration can reduce the increasing trend slope of the proportion of Category-5 PI by 42% (22%) under a strong (moderate) emission pathway; and 68% (30%) increasing trend slope reduction for the average PI. 
    more » « less
  3. Abstract An open‐source, physics‐based tropical cyclone (TC) downscaling model is developed, in order to generate a large climatology of TCs. The model is composed of three primary components: (a) a random seeding process that determines genesis, (b) an intensity‐dependent beta‐advection model that determines the track, and (c) a non‐linear differential equation set that determines the intensification rate. The model is entirely forced by the large‐scale environment. Downscaling ERA5 reanalysis data shows that the model is generally able to reproduce observed TC climatology, such as the global seasonal cycle, genesis locations, track density, and lifetime maximum intensity distributions. Inter‐annual variability in TC count and power‐dissipation is also well captured, on both basin‐wide and global scales. Regional TC hazard estimated by this model is also analyzed using return period maps and curves. In particular, the model is able to reasonably capture the observed return period curves of landfall intensity in various sub‐basins around the globe. The incorporation of an intensity‐dependent steering flow is shown to lead to regionally dependent changes in power dissipation and return periods. Advantages and disadvantages of this model, compared to other downscaling models, are also discussed. 
    more » « less
  4. null (Ed.)
    Abstract In this study, based on the 6-hourly tropical cyclone (TC) best track data and the ERA-Interim reanalysis data, statistical analyses as well as a machine learning approach, XGBoost, are used to identify and quantify factors that affect the overwater weakening rate (WR) of TCs over the western North Pacific (WNP) during 1980–2017. Statistical analyses show that the TC rapid weakening events usually occur when intense TCs cross regions with a sharp decrease in sea surface temperature (DSST) with relatively faster eastward or northward translational speeds, and move into regions with large environmental vertical wind shear (VWS) and dry conditions in the upshear-left quadrant. Results from XGBoost indicate that the relative intensity of TC (TC intensity normalized by its maximum potential intensity), DSST, and VWS are dominant factors determining TC WR, contributing 26.0%, 18.3%, and 14.9% to TC WR, and 9, 5, and 5 m s−1 day−1 to the variability of TC WR, respectively. Relative humidity in the upshear-left quadrant of VWS, zonal translational speed, divergence at 200 hPa, and meridional translational speed contribute 12.1%, 11.8%, 8.8%, and 8.1% to TC WR, respectively, but only contribute 2–3 m s−1 day−1 to the variability of TC WR individually. These findings suggest that the improved accurate analysis and prediction of the dominant factors may lead to substantial improvements in the prediction of TC WR. 
    more » « less
  5. Abstract Zonal extensions of the Western Pacific subtropical high (WPSH) strongly modulate extreme rainfall activity and tropical cyclone (TC) landfall over the Western North Pacific (WNP) region. These zonal extensions are primarily forced on seasonal timescales by inter‐basin zonal sea surface temperature (SST) gradients. However, despite the presence of large‐scale zonal SST gradients, the WPSH response to SSTs varies from year to year. In this study, we force the atmosphere‐only NCAR Community Earth System Model version 2 simulations with two real‐world SST patterns, both featuring the large‐scale zonal SST gradient characteristic of decaying El Niño‐developing La Niña summers. For each of these patterns, we performed four experimental sets that tested the relative contributions of the tropical Indian Ocean, Pacific, and Atlantic basin SSTs to simulated westward extensions over the WNP during June–August. Our results indicate that the subtle differences between the two SST anomaly patterns belie two different mechanisms forcing the WPSH's westward extensions. In one SST anomaly pattern, extratropical North Pacific SST forcing suppresses the tropical Pacific zonal SST gradient forcing, resulting in tropical Atlantic and Indian Ocean SSTs being the dominant driver. The second SST anomaly pattern drives a similar westward extension as the first pattern, but the underlying SST gradient driving the WPSH points to intra‐basin forcing mechanisms originating in the Pacific. The results of this study have implications for understanding and predicting the impact of the WPSH's zonal variability on tropical cyclones and extreme rainfall over the WNP. 
    more » « less