The research presented in this paper tested whether drawing concept maps changes how engineering students construct design problem statements and whether these differences are observable in their brains. The process of identifying and constructing problem statements is a critical step in engineering design. Concept mapping has the potential to expand the problem space that students explore through the attention given to the relationship between concepts. It helps integrate existing knowledge in new ways. Engineering students (n=66) were asked to construct a problem statement to improve mobility on campus. Half of these students were randomly chosen to first receive instructions about how to develop a concept map and were asked to draw a concept map about mobility systems on campus. The semantic similarity of concepts in the students’ problem statements, the length of their problem statements, and their neurocognition when developing their statements were measured. The results indicated that students who were asked to first draw concept maps produced a more diverse problem statement with less semantically similar words. The students who first developed concept maps also produce significantly longer problem statements. Concept mapping changed students’ neurocognition. The students who used concept mapping elicited less cognitive activation in their left prefrontal cortex (PFC) and more concentrated activation in their right PFC. The right PFC is generally associated with divergent thinking and the left PFC is generally associated with convergent and analytical thinking. These results provide new insight into how educational interventions, like concept mapping, can change students’ cognition and neurocognition. Better understanding how concept maps, and other tools, help students approach complex problems and the associated changes that occur in their brain can lay the groundwork for novel advances in engineering education that support new tools and pedagogy development for design.
more »
« less
Concept maps decrease neurocognitive demand on students when thinking about engineering problems,
The research presented in this paper explores the effect of concept maps on students’ neurocognition when constructing engineering problem statements. In total, 66 engineering students participated in the experiment. Half of the students were asked to create a concept map illustrating all of the systems and stakeholders represented in a building on campus. The other half of students were not asked to draw a concept map. Both groups were then asked to construct an engineering problem statement about improvements to the building. While performing the problem statement task, their neurocognitive activation in the prefrontal cortex (PFC) was measured using a non-intrusive neuroimaging technique called functional near-infrared spectroscopy. The students that were asked to complete the concept mapping task required less cognitive effort to formulate and analyze their problem statements. The specific regions that were less activated were regions of the brain generally associated with working memory and problem evaluation. These results provide new insight into the changes in mental processing that occurs when using tools like concept maps and may provide helpful techniques for students to structure engineering problems.
more »
« less
- Award ID(s):
- 1929896
- PAR ID:
- 10399187
- Editor(s):
- ASCE
- Date Published:
- Journal Name:
- ASCE Construction Research Congress 2022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Jazizadeh, F.; Shealy, T.; Garvin, M. (Ed.)Challenges associated with the design and construction of the built environment are complex. Students need training to help them deal with this complexity and to help them explore and reframe problems early during project planning and design. Concept maps provide a visual representation of complex information and the relationships between this information. The research presented in this paper tested whether priming students to think in systems by asking them to draw concept maps changes how they construct problem statements. In total, 40 engineering students participated in the study. Half were asked to draw a concept map before constructing a problem statement about how to improve mobility systems around campus. The cognitive effort (i.e., time and words) students spent on the task and the number of unique system elements included in their problem statement were measured. Students that received the concept mapping intervention spent significantly more time thinking about the problem, developed longer problem statements, and included more unique elements of systems. These findings suggest using concept mapping can aid students’ conceptualization of complex problems.more » « less
-
Neuroimaging provides a relatively new approach for advancing engineering education by exploring changes in neurocognition from educational interventions. The purpose of the research described in this paper is to present the results of a preliminary study that measured students’ neurocognition while concept mapping. Engineering design is an iterative process of exploring both the problem and solution spaces. To aid students in exploring these spaces, half of the 66 engineering students who participated in the study were first asked to develop a concept map and then construct a design problem statement. The concept mapping activity significantly reduced neurocognitive activation in the students’ left prefrontal cortex (PFC) compared to students who did not receive this intervention when constructing their problem statement. The sub-region in the left PFC that elicited less activation is generally associated with analytical judgment and goal-directed planning. The group of students who completed the concept mapping activity had greater focused neurocognitive activation in their right PFC. The right PFC is often associated with divergent thinking and ill-structured representation. Patterns of functional connectivity across students’ PFC also differed between the groups. The concept mapping activity reduced the network density in students’ PFC. Lower network density is one measure of lower cognitive effort. These results provide new insight into the neurocognition of engineering students when designing and how educational interventions can change engineering students’ neurocognition. A better understanding of how interventions like concept mapping shape students’ neurocognition, and how this relates to learning, can lay the groundwork for novel advances in engineering education that support new tools and pedagogy for engineering design.more » « less
-
The Defining Issues Test 2 (DIT-2) and Engineering Ethical Reasoning Instrument (EERI) are designed to measure ethical reasoning of general (DIT-2) and engineering-student (EERI) populations. These tools—and the DIT-2 especially—have gained wide usage for assessing the ethical reasoning of undergraduate students. This paper reports on a research study in which the ethical reasoning of first-year undergraduate engineering students at multiple universities was assessed with both of these tools. In addition to these two instruments, students were also asked to create personal concept maps of the phrase “ethical decision-making.” It was hypothesized that students whose instrument scores reflected more postconventional levels of moral development and more sophisticated ethical reasoning skills would likewise have richer, more detailed concept maps of ethical decision-making, reflecting their deeper levels of understanding of this topic and the complex of related concepts. In fact, there was no significant correlation between the instrument scores and concept map scoring, suggesting that the way first-year students conceptualize ethical decision making does not predict the way they behave when performing scenario-based ethical reasoning (perhaps more situated). This disparity indicates a need to more precisely quantify engineering ethical reasoning and decision making, if we wish to inform assessment outcomes using the results of such quantitative analyses.more » « less
-
Gero, John S. (Ed.)To explore the connection between brain and behavior in engineering design, this study measured the change in neurocognition of engineering students while they developed concept maps. Concept maps help designers organize complex ideas by illustrating components and relationships. Student concept maps were graded using a pre-established scoring method and compared to their neurocognitive activation. Results show significant correlations between performance and neurocognition. Concept map scores were positively correlated with activation in students’ prefrontal cortex. A prominent sub-region was the right dorsolateral prefrontal cortex (DLPFC), which is generally associated with divergent thinking and cognitive flexibility. Student scores were negatively correlated with measures of brain network density. The findings suggest a possible neurocognitive mechanism for better performance. More research is needed to connect brain activation to the cognitive activi-ies that occur when designing but these results provide new evidence for the brain functions that support the development of complex ideas during design.more » « less