skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Automated Construction of Lexicons to Improve Depression Screening with Text Messages
Given that depression is one of the most prevalent mental illnesses, developing effective and unobtrusive diagnosis tools is of great importance. Recent work that screens for depression with text messages leverage models relying on lexical category features. Given the colloquial nature of text messages, the performance of these models may be limited by formal lexicons. We thus propose a strategy to automatically construct alternative lexicons that contain more relevant and colloquial terms. Specifically, we generate 36 lexicons from fiction, forum, and news corpuses. These lexicons are then used to extract lexical category features from the text messages. We utilize machine learning models to compare the depression screening capabilities of these lexical category features. Out of our 36 constructed lexicons, 14 achieved statistically significantly higher average F1 scores over the pre-existing formal lexicon and basic bag-of-words approach. In comparison to the pre-existing lexicon, our best performing lexicon increased the average F1 scores by 10%. We thus confirm our hypothesis that less formal lexicons can improve the performance of classification models that screen for depression with text messages. By providing our automatically constructed lexicons, we aid future machine learning research that leverages less formal text.  more » « less
Award ID(s):
1852498
NSF-PAR ID:
10399241
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Journal of Biomedical and Health Informatics
ISSN:
2168-2194
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Searching through memory is mediated by complex interactions between the underlying mental lexicon and the processes that operate on this lexicon. However, these interactions are difficult to study due to the effortless manner in which neurotypical individuals perform cognitive tasks. In this work, we examine these interactions within a sample of prelingually deaf individuals with cochlear implants and normal hearing individuals who were administered the verbal fluency task for the "animals" category. Specifically, we tested how different candidates for underlying mental lexicons and processes account for search behavior within the verbal fluency task across the two groups. The models learned semantic representations from different combinations of textual (word2vec) and speech-based (speech2vec) information. The representations were then combined with process models of memory search based on optimal foraging theory that incorporate different lexical sources for transitions within and between clusters of items produced in the fluency task. Our findings show that semantic, word frequency, and phonological information jointly influence search behavior and highlight the delicate balance of different lexical sources that produces successful search outcomes. 
    more » « less
  2. Depression is a very common mental health disorder with a devastating social and economic impact. It can be costly and difficult to detect, traditionally requiring a significant number of hours by a trained mental health professional. Recently, machine learning and deep learning models have been trained for depression screening using modalities extracted from videos of clinical interviews conducted by a virtual agent. This complex task is challenging for deep learning models because of the multiple modalities and limited number of participants in the dataset. To address these challenges we propose AudiFace, a multimodal deep learning model that inputs temporal facial features, audio, and transcripts to screen for depression. To incorporate all three modalities, AudiFace combines multiple pre-trained transfer learning models and bidirectional LSTM with self-Attention. When compared with the state-of-the-art models, AudiFace achieves the highest F1 scores for thirteen of the fifteen different datasets. AudiFace notably improves the depression screening capabilities of general wellbeing questions. Eye gaze proved to be the most valuable of the temporal facial features, both in the unimodal and multimodal models. Our results can be used to determine the best combination of modalities, temporal facial features, as well as clinical interview questions for future depression screening applications. 
    more » « less
  3. An important task for Information Extraction from Microblogs is Named Entity Recognition (NER) that extracts mentions of real-world entities from microblog messages and meta-information like entity type for better entity characterization. A lot of microblog NER systems have rightly sought to prioritize modeling the non-literary nature of microblog text. These systems are trained on offline static datasets and extract a combination of surface-level features – orthographic, lexical, and semantic – from individual messages for noisy text modeling and entity extraction. But given the constantly evolving nature of microblog streams, detecting all entity mentions from such varying yet limited context in short messages remains a difficult problem to generalize. In this paper, we propose the NER Globalizer pipeline better suited for NER on microblog streams. It characterizes the isolated message processing by existing NER systems as modeling local contextual embeddings, where learned knowledge from the immediate context of a message is used to suggest seed entity candidates. Additionally, it recognizes that messages within a microblog stream are topically related and often repeat mentions of the same entity. This suggests building NER systems that go beyond localized processing. By leveraging occurrence mining, the proposed system therefore follows up traditional NER modeling by extracting additional mentions of seed entity candidates that were previously missed. Candidate mentions are separated into well-defined clusters which are then used to generate a pooled global embedding drawn from the collective context of the candidate within a stream. The global embeddings are utilized to separate false positives from entities whose mentions are produced in the final NER output. Our experiments show that the proposed NER system exhibits superior effectiveness on multiple NER datasets with an average Macro F1 improvement of 47.04% over the best NER baseline while adding only a small computational overhead. 
    more » « less
  4. null (Ed.)
    Indonesian language is heavily riddled with colloquialism whether in written or spoken forms. In this paper, we identify a class of Indonesian colloquial words that have undergone morphological transformations from their standard forms, categorize their word formations, and propose a benchmark dataset of Indonesian Colloquial Lexicons (IndoCollex) consisting of informal words on Twitter expertly annotated with their standard forms and their word formation types/tags. We evalu- ate several models for character-level transduction to perform morphological word normalization on this testbed to understand their failure cases and provide baselines for future work. As IndoCollex catalogues word formation phenomena that are also present in the non-standard text of other languages, it can also provide an attractive testbed for methods tailored for cross-lingual word normalization and non-standard word formation. 
    more » « less
  5. Does the lexicon of a language have consequences for cognition? Here, we provide evidence that the ease with which category features can be named can influence category learning. Across two experiments, participants learned to distinguish images composed of colors (Experiment 1) and shapes (Experiment 2) that were either easy or more difficult to name in English. Holding the category structure constant, when the underlying features of the category were easy to name, participants were faster and more accurate in learning the novel category. We argue that these findings suggest that labels allow learners to form more compact hypotheses, which in turn can be confirmed or disconfirmed in the course of learning. These results have consequences for considering how cross-linguistic differences in lexical inventory affect how readily novel categories are learned. 
    more » « less