Deep generative models have enabled the automated synthesis of high-quality data for diverse applications. However, the most effective generative models are specialized to data from a single domain (e.g., images or text). Real-world applications such as healthcare require multi-modal data from multiple domains (e.g., both images and corresponding text), which are difficult to acquire due to limited availability and privacy concerns and are much harder to synthesize. To tackle this joint synthesis challenge, we propose an End-to-end MultImodal X-ray genERative model (EMIXER) for jointly synthesizing x-ray images and corresponding free-text reports, all conditional on diagnosis labels. EMIXER is an conditional generative adversarial model by 1) generating an image based on a label, 2) encoding the image to a hidden embedding, 3) producing the corresponding text via a hierarchical decoder from the image embedding, and 4) a joint discriminator for assessing both the image and the corresponding text. EMIXER also enables self-supervision to leverage vast amount of unlabeled data. Extensive experiments with real X-ray reports data illustrate how data augmentation using synthesized multimodal samples can improve the performance of a variety of supervised tasks including COVID-19 X-ray classification with very limited samples. The quality of generated images and reports are also confirmed by radiologists. We quantitatively show that EMIXER generated synthetic datasets can augment X-ray image classification, report generation models to achieve 5.94% and 6.9% improvement on models trained only on real data samples. Taken together, our results highlight the promise of state of generative models to advance clinical machine learning.
more »
« less
Text Generation to Aid Depression Detection: A Comparative Study of Conditional Sequence Generative Adversarial Networks
Corpuses of unstructured textual data, such as text messages between individuals, are often predictive of medical issues such as depression. The text data usually used in healthcare applications has high value and great variety, but is typically small in volume. Generating labeled unstructured text data is important to improve models by augmenting these small datasets, as well as to facilitate anonymization. While methods for labeled data generation exist, not all of them generalize well to small datasets. In this work, we thus perform a much needed systematic comparison of conditional text generation models that are promising for small datasets due to their unified architectures. We identify and implement a family of nine conditional sequence generative adversarial networks for text generation, which we collectively refer to as cSeqGAN models. These models are characterized along two orthogonal design dimensions: weighting strategies and feedback mechanisms. We conduct a comparative study evaluating the generation ability of the nine cSeqGAN models on three diverse text datasets with depression and sentiment labels. To assess the quality and realism of the generated text, we use standard machine learning metrics as well as human assessment via a user study. While the unconditioned models produced predictive text, the cSeqGAN models produced more realistic text. Our comparative study lays a solid foundation and provides important insights for further text generation research, particularly for the small datasets common within the healthcare domain.
more »
« less
- Award ID(s):
- 1852498
- PAR ID:
- 10399254
- Date Published:
- Journal Name:
- 2022 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 2804 to 2813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Purchasing a home is one of the largest investments most people make. House price prediction allows individuals to be informed about their asset wealth. Transparent pricing on homes allows for a more efficient market and economy. We report the performance of machine learning models trained with structured tabular representations and unstructured text descriptions. We collected a dataset of 200 descriptions of houses which include meta-information, as well as text descriptions. We test logistic regression and multi-layer perceptron (MLP) classifiers on dividing these houses into binary buckets based on fixed price thresholds. We present an exploration into strategies to represent unstructured text descriptions of houses as inputs for machine learning models. This includes a comparison of term frequency-inverse document frequency (TF-IDF), bag-of-words (BoW), and zero-shot inference with large language models. We find the best predictive performance with TF-IDF representations of house descriptions. Readers will gain an understanding of how to use machine learning models optimized with structured and unstructured text data to predict house prices.more » « less
-
null (Ed.)Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research.more » « less
-
Despite the power of large language models (LLMs) in various cross-modal generation tasks, their ability to generate 3D computer-aided design (CAD) models from text remains underexplored due to the scarcity of suitable datasets. Additionally, there is a lack of multimodal CAD datasets that include both reconstruction parameters and text descriptions, which are essential for the quantitative evaluation of the CAD generation capabilities of multimodal LLMs. To address these challenges, we developed a dataset of CAD models, sketches, and image data for representative mechanical components such as gears, shafts, and springs, along with natural language descriptions collected via Amazon Mechanical Turk. By using CAD programs as a bridge, we facilitate the conversion of textual output from LLMs into precise 3D CAD designs. To enhance the text-to-CAD generation capabilities of GPT models and demonstrate the utility of our dataset, we developed a pipeline to generate fine-tuning training data for GPT-3.5. We fine-tuned four GPT-3.5 models with various data sampling strategies based on the length of a CAD program. We evaluated these models using parsing rate and intersection over union (IoU) metrics, comparing their performance to that of GPT-4 without fine-tuning. The new knowledge gained from the comparative study on the four different fine-tuned models provided us with guidance on the selection of sampling strategies to build training datasets in fine-tuning practices of LLMs for text-to-CAD generation, considering the trade-off between part complexity, model performance, and cost.more » « less
-
It’s critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through developing machine learning models, few provided in-depth insights into the nuanced learning processes. In this study, we examined high school students’ data modeling practices and processes. Twenty-eight students developed machine learning models with text data for classifying negative and positive reviews of ice cream stores. We identified nine data modeling practices that describe students’ processes of model exploration, development, and testing and two themes about evaluating automated decisions from data technologies. The results provide implications for designing accessible data modeling experiences for students to understand data justice as well as the role and responsibility of data modelers in creating AI technologies.more » « less
An official website of the United States government

