skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variation in carbon and nitrogen concentrations among peatland categories at the global scale
Peatlands account for 15 to 30% of the world’s soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10–20 cm layer, were 440 ± 85.1 g kg -1 and 13.9 ± 7.4 g kg -1 , with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446–532 g kg -1 ) and lowest in intermediate and extremely rich fens (375–414 g kg -1 ). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.  more » « less
Award ID(s):
1636476 2011257
PAR ID:
10399362
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Lewis, David B.
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
11
ISSN:
1932-6203
Page Range / eLocation ID:
e0275149
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The extent and distribution of tropical peatlands, and their importance as a vulnerable carbon (C) store, remain poorly quantified. Although large peatland complexes in Peru, the Congo basin, and Southeast Asia have been mapped in detail, information on many other tropical areas is uncertain. In the Eastern Colombian lowlands, peatland area estimates range from 700 km2 to nearly 60,000 km2, leading to highly uncertain C stocks. Using new field data, high‐resolution Earth observation (EO), and a random forest approach, we mapped peatlands across Colombian territory East of the Andes below 400 m elevation. We estimated peatland extent using two approaches: a conservative method focused on medium‐to‐high peat probability areas and a more inclusive one accounting for large low‐probability areas. Multiplying these extents by below‐ground carbon density yields a conservative estimate of 0.95 (0.6–1.39 Pg C, 95% confidence interval) over 9,391 km2(7,369–11,549 km2) and up to 2.86 Pg C (1.76–4.22 Pg C) across 29,069 km2 (22,429–36,238 km2). Among four potentially peat‐forming ecosystems identified, palm swamps and floodplain forests contributed most to the peat extent and C stock. We found that most peatland patches were relatively small, covering less than 100 ha. We compared our map to previously published global and pan‐tropical peat maps and found low spatial overlap among them, suggesting that peat maps uninformed by local field information may not precisely specify which landscape areas within a peatland‐rich region are actually peatlands. We further assessed the suitability of different EO and climate variables, highlighting the need for high‐resolution data to capture local heterogeneities in the landscape. 
    more » « less
  2. Abstract Peatlands are some of the world’s most carbon-dense ecosystems and release substantial quantities of greenhouse gases when degraded. However, conserving peatlands in many tropical areas is challenging due to limited knowledge of their distribution. To address this, we surveyed soils and plant communities in Colombia’s eastern lowlands, where few peatlands have previously been described. We documented peat soils >40 cm thick at 51 of more than 100 surveyed wetlands. We use our data to update a regional peatland classification, which includes a new and possibly widespread peatland type, ‘the white-sand peatland,’ as well as two distinctive open-canopy sub-types. Analysis of peat bulk density and organic matter content from 39 intact peat cores indicates that the average per-area carbon densities of these sites (490–1230 Mg C ha−1, depending on type) is 4–10 times the typical carbon stock of a (non-peatland) Amazonian forest. We used remote sensing to upscale our observations, generating the first data-driven peatland map for the region. The total estimated carbon stock of these peatlands of 1.91 petagrams (Pg C) (2-sigma confidence interval, 0.60–4.22) approaches that of South America’s largest known peatland complex in the northern Peruvian Amazon, indicating that substantial peat carbon stores on the continent have yet to be documented. These observations indicate that tropical peatlands may be far more diverse in form and structure and broadly distributed than is widely understood, which could have important implications for tropical peatland conservation strategies. 
    more » « less
  3. Tropical peatlands play an important role in global carbon (C) cycling, but little is known about factors driving carbon dioxide (CO2) and methane (CH4) emissions from these ecosystems, especially production in deeper soils. This study aimed to identify source material and processes regulating C emissions originating deep in three sites in a peatland on the Caribbean coast of Panama. We hypothesized that (1) surface-derived organic matter transported down the soil profile is the primary C source for respiration products at depth and that (2) high lignin content results in hydrogenotrophic methanogenesis as the dominant CH4 production pathway throughout the profile. We used radiocarbon isotopic values to determine whether CO2 and CH4 at depth are produced from modern substrates or ancient deep peat, and we used stable C isotopes to identify the dominant CH4 production pathway. Peat organic chemistry was characterized using 13C solid-state nuclear magnetic resonance spectroscopy (13C-NMR). We found that deep peat respiration products had radiocarbon signatures that were more similar to surface dissolved organic C (DOC) than deep solid peat. These results indicate that surface-derived organic matter was the dominant source for gas production at depth in this peatland, likely because of vertical transport of DOC from the surface to depth. Lignin, which was the most abundant compound (55 %–70 % of C), increased with depth across these sites, whereas other C compounds like carbohydrates did not vary with depth. These results suggest that there is no preferential decomposition of carbohydrates but instead preferential retention of lignin. Stable isotope signatures of respiration products indicated that hydrogenotrophic rather than acetoclastic methanogenesis was the dominant production pathway of CH4 throughout the peat profile. These results show that deep C in tropical peatlands does not contribute greatly to surface fluxes of carbon dioxide, with compounds like lignin preferentially retained. This protection of deep C helps explain how peatland C is retained over thousands of years and points to the vulnerability of this C should anaerobic conditions in these wet ecosystems change. 
    more » « less
  4. null (Ed.)
    The sources of atmospheric methane (CH4) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH4 emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14C dates), peatland type (>250 peat cores), and contemporary CH4 emissions in order to explore the effects of changes in wetland type and peatland expansion on CH4 emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH4 emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH4 y-1 as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH4 emissions by 20% to 34 ± 21 Tg y-1 by the present day. 
    more » « less
  5. Tropical peatlands are highly vulnerable to anthropogenic alterations. In Costa Rica, riverine peatlands are understudied, and most are not included in protected areas. This study aims to generating information useful to assess the anthropogenic pressure in a riverine peatland in Los Robles Sector (LRS) of Medio Queso Wetland (MQW) complex. Evaluations of impacts of fires on vegetation and surface peat chemistry, and the post-2021 fire, makeup of dominant vegetation changes with the Cyperaceae species Scleria melaleuca replacing Eleocharis interstincta as the dominant species are presented. The topsoil (0–20 cm) total C content was quantified as lower than 300 g kg−1 with no significant statistical differences in total C and N content between soil shortly after the fires or two years later. The species E. interstincta is observed to promote higher C stability during the dry season, and has a more recalcitrant composition of the root system compared to the post 2021-fire dominant S. melaleuca. To reduce the impact on C accumulation, measures to prevent grazing-originated fires, especially when the water table is low, are urgent. Hence, this work aims at proving information that can be a baseline for impacts assessment and to inform conservation measures and policies. 
    more » « less