skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controls on Wintertime Ventilation in Southern Drake Passage
Abstract Drake Passage is a key region for transport between the surface and interior ocean, but a mechanistic understanding of this exchange remains immature. Here, we present wintertime, submesoscale‐resolving hydrographic transects spanning the southern boundary of the Antarctic Circumpolar Current and the Polar Front (PF). Despite the strong surface wind and buoyancy forcing, a freshwater lens suppresses surface‐interior exchange south of the PF; ventilation is instead localized to the PF. Multiple lines of the analysis suggest submesoscale processes contribute to ventilation at the PF, including small‐scale, O(10 km), frontal structure in water mass properties below the mixed layer and modulation of a surface eddy diffusivity at sub‐50 km scales. These results show that ventilation is sensitive to both submesoscale properties near fronts and non‐local processes, for example, sea‐ice melt, that set stratification and mixed layer properties. This highlights the need for adaptive observing strategies to constrain Southern Ocean heat and carbon budgets.  more » « less
Award ID(s):
1755529
PAR ID:
10399449
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions. Significance StatementThis study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change. 
    more » « less
  2. Abstract Flow‐topography interactions along the path of the Antarctic Circumpolar Current generate standing meanders, create regions of enhanced eddy kinetic energy (EKE), and modify frontal structure. We consider the impact of standing meanders on ventilation based on oxygen measurements from Argo floats and the patterns of apparent oxygen utilization (AOU). Regions of high‐EKE have relatively reduced AOU values at depths 200–700 m below the base of the mixed layer and larger AOU variance, suggesting enhanced ventilation due to both along‐isopycnal stirring and enhanced exchange across the base of the mixed layer. Vertical exchange is inferred from finite‐size Lyapunov exponents, a proxy for the magnitude of surface lateral density gradients, which suggest that submesoscale vertical velocities may contribute to ventilation. The shaping of ventilation by standing meanders has implications for the temporal and spatial variability of air‒sea exchange. 
    more » « less
  3. Abstract Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region’s dead zone. 
    more » « less
  4. Abstract Standing meanders are a key component of the Antarctic Circumpolar Current (ACC) circulation system, and numerical studies have shown that these features may locally enhance subduction, upwelling, as well as lateral and vertical tracer transport. Yet, observational data from these regions remain sparse. Here, we present results based on measurements made by a group of autonomous platforms sampling an ACC standing meander formed due to the interaction of the Polar Front with the Southwest Indian Ridge. Two Seagliders were deployed alongside a Biogeochemical‐Argo float that was advected through the standing meander. In the high eddy kinetic energy region of the standing meander, the glider observations reveal enhanced submesoscale frontal gradients as well as heightened tracer variability at depth, as compared to the more quiescent region further downstream. Vertical gradients in spice and apparent oxygen utilization are reduced in the standing meander despite similarities in the large‐scale vertical stratification, suggesting greater ventilation of the surface ocean. These observations are consistent with numerical studies that highlight standing meanders as hotspots for ventilation and subduction due to enhanced mesoscale stirring and submesoscale vertical velocities. Our results emphasize the need to account for spatial heterogeneity in processes influencing air‐sea exchange, carbon export, and biogeochemical cycling in the Southern Ocean. 
    more » « less
  5. null (Ed.)
    Abstract Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO 2 to the ocean interior. The relationships between mixed-layer ventilation, the Southern Annular Mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index ( r = 0.82) and reflect SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. This Joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed-layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to mid-latitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs. 
    more » « less