skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Controls on Wintertime Ventilation in Southern Drake Passage
Abstract

Drake Passage is a key region for transport between the surface and interior ocean, but a mechanistic understanding of this exchange remains immature. Here, we present wintertime, submesoscale‐resolving hydrographic transects spanning the southern boundary of the Antarctic Circumpolar Current and the Polar Front (PF). Despite the strong surface wind and buoyancy forcing, a freshwater lens suppresses surface‐interior exchange south of the PF; ventilation is instead localized to the PF. Multiple lines of the analysis suggest submesoscale processes contribute to ventilation at the PF, including small‐scale, O(10 km), frontal structure in water mass properties below the mixed layer and modulation of a surface eddy diffusivity at sub‐50 km scales. These results show that ventilation is sensitive to both submesoscale properties near fronts and non‐local processes, for example, sea‐ice melt, that set stratification and mixed layer properties. This highlights the need for adaptive observing strategies to constrain Southern Ocean heat and carbon budgets.

 
more » « less
Award ID(s):
1755529
PAR ID:
10399449
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely proportional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and deep mixed layers in winter, especially in mode water formation regions.

    Significance Statement

    This study examines how instabilities in the surface layer of the ocean bring interior water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxygen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.

     
    more » « less
  2. Abstract

    Flow‐topography interactions along the path of the Antarctic Circumpolar Current generate standing meanders, create regions of enhanced eddy kinetic energy (EKE), and modify frontal structure. We consider the impact of standing meanders on ventilation based on oxygen measurements from Argo floats and the patterns of apparent oxygen utilization (AOU). Regions of high‐EKE have relatively reduced AOU values at depths 200–700 m below the base of the mixed layer and larger AOU variance, suggesting enhanced ventilation due to both along‐isopycnal stirring and enhanced exchange across the base of the mixed layer. Vertical exchange is inferred from finite‐size Lyapunov exponents, a proxy for the magnitude of surface lateral density gradients, which suggest that submesoscale vertical velocities may contribute to ventilation. The shaping of ventilation by standing meanders has implications for the temporal and spatial variability of air‒sea exchange.

     
    more » « less
  3. Abstract

    Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region’s dead zone.

     
    more » « less
  4. Abstract

    Submesoscale dynamics are typically intensified at boundaries and assumed to weaken below the mixed layer in the open ocean. Here, we assess both the seasonality and the vertical distribution of submesoscale motions in an open-ocean region of the northeast Atlantic. Second-order structure functions, or variance in properties separated by distance, are calculated from submesoscale-resolving ocean glider and mooring observations, as well as a 1/48° numerical ocean model. This dataset combines a temporal coverage that extends through a full seasonal cycle, a horizontal resolution that captures spatial scales as small as 1 km, and vertical sampling that provides near-continuous coverage over the upper 1000 m. While kinetic and potential energies undergo a seasonal cycle, being largest during the winter, structure function slopes, influenced by dynamical characteristics, do not exhibit a strong seasonality. Furthermore, structure function slopes show weak vertical variations; there is not a strong change in properties across the base of the mixed layer. Additionally, we compare the observations to output from a high-resolution numerical model. The model does not represent variability associated with superinertial motions and does not capture an observed reduction in submesoscale kinetic energy that occurs throughout the water column in spring. Overall, these results suggest that the transfer of mixed layer submesoscale variability down to depths below the traditionally defined mixed layer is important throughout the weakly stratified subpolar mode waters.

     
    more » « less
  5. Abstract

    Standing meanders are a key component of the Antarctic Circumpolar Current (ACC) circulation system, and numerical studies have shown that these features may locally enhance subduction, upwelling, as well as lateral and vertical tracer transport. Yet, observational data from these regions remain sparse. Here, we present results based on measurements made by a group of autonomous platforms sampling an ACC standing meander formed due to the interaction of the Polar Front with the Southwest Indian Ridge. Two Seagliders were deployed alongside a Biogeochemical‐Argo float that was advected through the standing meander. In the high eddy kinetic energy region of the standing meander, the glider observations reveal enhanced submesoscale frontal gradients as well as heightened tracer variability at depth, as compared to the more quiescent region further downstream. Vertical gradients in spice and apparent oxygen utilization are reduced in the standing meander despite similarities in the large‐scale vertical stratification, suggesting greater ventilation of the surface ocean. These observations are consistent with numerical studies that highlight standing meanders as hotspots for ventilation and subduction due to enhanced mesoscale stirring and submesoscale vertical velocities. Our results emphasize the need to account for spatial heterogeneity in processes influencing air‐sea exchange, carbon export, and biogeochemical cycling in the Southern Ocean.

     
    more » « less