skip to main content

Title: Time-Varying Empirical Probability Densities of Southern Ocean Surface Winds: Linking the Leading Mode to SAM and QuantifyingWind Product Differences
Abstract Southern Ocean (SO) surface winds are essential for ventilating the upper ocean by bringing heat and CO 2 to the ocean interior. The relationships between mixed-layer ventilation, the Southern Annular Mode (SAM), and the storm tracks remain unclear because processes can be governed by short-term wind events as well as long-term means. In this study, observed time-varying 5-day probability density functions (PDFs) of ERA5 surface winds and stresses over the SO are used in a singular value decomposition to derive a linearly independent set of empirical basis functions. The first modes of wind (72% of the total wind variance) and stress (74% of the total stress variance) are highly correlated with a standard SAM index ( r = 0.82) and reflect SAM’s role in driving cyclone intensity and, in turn, extreme westerly winds. This Joint PDFs of zonal and meridional wind show that southerly and less westerly winds associated with strong mixed-layer ventilation are more frequent during short and distinct negative SAM phases. The probability of these short-term events might be related to mid-latitude atmospheric circulation. The second mode describes seasonal changes in the wind variance (16% of the total variance) that are uncorrelated with the first mode. The analysis produces similar results when repeated using 5-day PDFs from a suite of scatterometer products. Differences between wind product PDFs resemble the first mode of the PDFs. Together, these results show a strong correlation between surface stress PDFs and the leading modes of atmospheric variability, suggesting that empirical modes can serve as a novel pathway for understanding differences and variability of surface stress PDFs.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
1 to 80
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Both a quasi‐biennial variability and an overall linearly increasing trend are identified in the Sub‐Antarctic Mode Water (SAMW) subduction rate across the Southern Hemisphere ocean, using the Argo data during 2005–2019. The quasi‐biennial variability is mainly due to variability of the mixed layer depth. Variability of wind stress curl in the SAMW formation regions associated with the Southern Annular Mode plays a critical role in generating the quasi‐biennial variability of the mixed layer depth and consequently the SAMW subduction rates. The SAMW subduction rate across the Southern Hemisphere ocean, long‐term mean totaling 56 Sv, has increased at 0.73 ± 0.65 Sv year−1over the past 15 years. The increase has directly contributed to the observed increase in the total SAMW volume. Much of this increasing trend can be explained by the deepening mixed layers, which in turn are primarily forced by the strengthening westerly winds under an increasing Southern Annular Mode.

    more » « less
  2. Abstract

    In recent years, the Southern Ocean has experienced unprecedented surface warming and sea ice loss—a stark reversal of the sea ice expansion and surface cooling that prevailed over the preceding decades. Here, we examine the mechanisms that led to the abrupt circumpolar surface warming events that occurred in late 2016 and 2019 and assess the role of internal climate variability. A mixed layer heat budget analysis reveals that these recent circumpolar surface warming events were triggered by a weakening of the circumpolar westerlies, which decreased northward Ekman transport and accelerated the seasonal shoaling of the mixed layer. We emphasize the underappreciated effect of the latter mechanism, which played a dominant role and amplified the warming effect of air–sea heat fluxes during months of peak solar insolation. An examination of the CESM1 large ensemble demonstrates that these recent circumpolar warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM), whereby negative SAM in austral spring favors shallower mixed layers and anomalously high summertime SST. A key insight from this analysis is that the seasonal phasing of springtime mixed layer depth shoaling is an important contributor to summertime SST variability in the Southern Ocean. Thus, future Southern Ocean summertime SST extremes will depend on the coevolution of mixed layer depth and surface wind variability.

    Significance Statement

    This study examines how reductions in the strength of the circumpolar westerlies can produce abrupt and extreme surface warming across the Southern Ocean. A key insight is that the mixed layer temperature is most sensitive to surface wind perturbations in late austral spring, when the regional mixed layer depth and solar insolation approach their respective seasonal minimum and maximum. This heightened surface temperature response to surface wind variability was realized during the austral spring of 2016 and 2019, when a dramatic weakening of the circumpolar westerlies triggered unprecedented warming across the Southern Ocean. In both cases, the anomalously weak circumpolar winds reduced the northward Ekman transport of cool subpolar waters and caused the mixed layer to shoal more rapidly in the spring, with the latter mechanism being more dominant. Using results from an ensemble of coupled climate simulations, we demonstrate that the 2016 and 2019 Southern Ocean warming events are consistent with the internal variability associated with the Southern Annular Mode (SAM). These results suggest that future Southern Ocean surface warming extremes will depend on both the evolution of regional mixed layer depths and interannual wind variability.

    more » « less
  3. Abstract

    Subseasonal surface wind variability strongly impacts the annual mean and subseasonal turbulent atmospheric surface fluxes. However, the impacts of subseasonal wind variability on the ocean are not fully understood. Here, we quantify the sensitivity of the ocean surface stress (𝛕), buoyancy flux (B), and mixed layer depth (MLD) to subseasonal wind variability in both a one‐dimensional (1‐D) vertical column model and a three‐dimensional (3‐D) global mesoscale‐resolving ocean/sea ice model. The winds are smoothed by time filtering the pseudo‐stresses, so the mean stress is approximately unchanged, and some important surface flux feedbacks are retained. The 1‐D results quantify the sensitivities to wind variability at different time scales from 120 days to 1 day at a few sites. The 3‐D results quantify the sensitivities to wind variability shorter than 60 days at all locations, and comparisons between 1‐D and 3‐D results highlight the importance of 3‐D ocean dynamics. Globally, subseasonal winds explain virtually all of subseasonal𝛕variance, about half of subseasonalBvariance but only a quarter of subseasonal MLD variance. Subseasonal winds also explain about a fifth of the annual mean MLD and a similar and spatially correlated fraction of the mean friction velocity,whereρswis the density of seawater. Hence, the subseasonal MLD variance is relatively insensitive to subseasonal winds despite their strong impact on localBand𝛕variability, but the mean MLD is relatively sensitive to subseasonal winds to the extent that they modify the meanu*, and both of these sensitivities are modified by 3‐D ocean dynamics.

    more » « less
  4. The interannual variability and trends of sea surface temperature (SST) around southern South America are studied from 1982 to 2017 using monthly values of the Optimally Interpolation SST version 2 gridded database. Mid-latitude (30°–50°S) regions in the eastern South Pacific and western South Atlantic present moderate to intense warming (~0.4°C decade −1 ), while south of 50°S the region around southern South America presents moderate cooling (~ −0.3°C decade −1 ). Two areas of statistically significant trends of SST anomalies (SSTa) with opposite sign are found on the Patagonian Shelf over the southwest South Atlantic: a warming area delimited between 42 and 45°S (Northern Patagonian Shelf; NPS), and a cooling area between 49 and 52°S (Southern Patagonian Shelf; SPS). Between 1982 and 2017 the warming rate has been 0.15 ± 0.01°C decade −1 representing an increase of 0.52°C at NPS, and the cooling rate has been –0.12 ± 0.01°C decade −1 representing a decrease of 0.42°C at SPS. On both regions, the largest trends are observed during 2008–2017 (0.35 ± 0.02°C decade −1 at NPS and –0.27 ± 0.03°C decade −1 at SPS), while the trends in 1982–2007 are non-significant, indicating the record-length SSTa trends are mostly associated with the variability observed during the past 10 years of the record. The spectra of the records present significant variance at interannual time scales, centered at about 80 months (~6 years). The observed variability of SSTa is studied in connection with atmospheric forcing (zonal and meridional wind components, wind speed, wind stress curl and surface heat fluxes). During 1982–2007, the local meridional wind explains 25–30% of the total variance at NPS and SPS on interannual time scales. During 2008–2017, the SSTa at NPS is significantly anticorrelated with the local zonal wind ( r = –0.85), while at SPS it is significantly anticorrelated with the meridional wind ( r = –0.61). Our results show that a substantial fraction of the interannual variability of SSTa around southern South America can be described by the first three empirical orthogonal function (EOF) modes which explain 28, 16, and 12% of the variance, respectively. The variability of the three EOF principal components time series is associated with the combined variability of El Niño–Southern Oscillation, the Interdecadal Pacific Oscillation and the Southern Annular Mode. 
    more » « less
  5. Abstract

    A high‐resolution ocean model is used to characterize the variability of the shelf circulation and cross‐shelf transport around the South Georgia island (SG). The time‐mean shelf circulation consists of a counterclockwise flow with a net onshelf mass flow in the south and a net offshelf mass flow in the north. In the south, the cross‐shelf exchanges show a two‐layer structure with an offshelf flow below 350 m and onshelf flow above. In the north, the cross‐shelf exchanges show a three‐layer structure with the onshelf flow found only between 350 and 50 m. Correlation analysis shows that winds and the Southern Antarctic Circumpolar Current Front (SACCF) current modulate the variability of the shelf circulation and cross‐shelf transport. Local wind stress is significantly correlated with the coastal currents, mid‐shelf jet, and cross‐shelf transports in the upper layer, while the SACCF modulates the shelf and cross‐shelf transports in the southwestern shelf. Likewise, an Empirical Orthogonal Function analysis indicates that the first mode of shelf circulation variability is highly correlated with the SACCF, while the second mode is explained by the local wind stress and significantly correlated with the Antarctic Oscillation. The El Niño Southern Oscillation does not significantly contribute to the shelf circulation but is significantly correlated with the surface temperature variability. The atmospheric teleconnection drives changes in local heat flux, such that warm El Niño conditions over the equatorial Pacific are associated with a cooling of the SG waters. This superposes local signals onto temperature anomalies advected from upstream in the ACC found in previous studies.

    more » « less