skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Processing and Validation of FORMOSAT‐7/COSMIC‐2 GPS Total Electron Content Observations
Abstract Slant absolute total electron content (TEC) is observed by the Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (FORMOSAT‐7/COSMIC‐2, F7/C2) Tri‐GNSS Radio Occultation System (TGRS) instrument. We present details of the data processing algorithms, validation, and error assessment for the F7/C2 global positioning system (GPS) absolute TEC observations. The data processing includes estimation and application of solar panel dependent pseudorange multipath maps, phase to pseudorange leveling, and estimation of separate L1C‐L2C and L1C‐L2P receiver differential code biases. We additionally perform a validation of the F7/C2 GPS absolute TEC observations through comparison with colocated, independent, TEC observations from the Swarm‐B satellite. Based on this comparison, we conclude that the accuracy of the F7/C2 GPS absolute TEC observations is less than 3.0 TEC units. Results are also presented that illustrate the suitability of the F7/C2 GPS absolute TEC observations for studying the climatology and variability of the topside ionosphere and plasmasphere (i.e., altitudes above the F7/C2 orbit of550 km). These results demonstrate that F7/C2 provides high quality GPS absolute TEC observations that can be used for ionosphere‐thermosphere data assimilation as well as scientific studies of the topside ionosphere and plasmasphere.  more » « less
Award ID(s):
2054356
PAR ID:
10449876
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Radio Science
Volume:
56
Issue:
8
ISSN:
0048-6604
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global Navigation Satellite System (GNSS) Radio Occultation (RO) missions, such as the Formosa Satellite‐3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT‐3/COSMIC) and the upcoming FORMOSAT‐7/COSMIC‐2, provide valuable profiling of the ionized atmosphere for the monitoring of space weather. This study shows that the FORMOSAT‐3/COSMIC and FORMOSAT‐7/COSMIC‐2 missions' ability to monitor highly variable ionospheric weather can be considerably extended with the help of data assimilation. The Gridpoint Statistical Interpolation (GSI) Ionosphere is a new data assimilation system designed specifically for the low‐latitude and midlatitude ionosphere. The capability of the GSI Ionosphere is first demonstrated with actual FORMOSAT‐3/COSMIC RO total electron content (TEC) data for January 2013. Features of the ionospheric equatorial ionization anomaly in a coupled plasmasphere ionosphere thermosphere model become more consistent with the TEC maps created with independent ground‐based GPS data. The consistency has improved by assimilation of FORMOSAT‐3/COSMIC RO data up to about 50% in comparison to the control simulation case without data assimilation. To evaluate the impact of future RO missions on ionospheric weather specification, comparative Observing System Simulation Experiments (OSSEs) are carried out with synthetic RO TEC data. An OSSE of FORMOSAT‐7/COSMIC‐2 shows that the GSI Ionosphere can improve the ionospheric specification within ±30° geomagnetic latitude by 67% over the control case, which is comparable to the improvement yielded by FORMOSAT‐3/COSMIC for 2009 (61%). These results indicate a great potential for improving the monitoring of realistic ionospheric weather with the help of FORMOSAT‐7/COSMIC‐2 RO TEC data. 
    more » « less
  2. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less
  3. Abstract The FORMOSAT‐7/COSMIC‐2 (F7/C2) satellite mission was launched on 25 June 2019 with six low‐Earth‐orbit satellites and can provide thousands of daily radio occultation (RO) soundings in the low‐latitude and midlatitude regions. This study shows the preliminary results of space weather data products based on F7/C2 RO sounding: global ionospheric specification (GIS) electron density and Ne‐aided Abel and Abel electron density profiles. GIS is the ionospheric data assimilation product based on the Gauss‐Markov Kalman filter, assimilating the ground‐based Global Positioning System and space‐based F7/C2 RO slant total electron content, providing continuous global three‐dimensional electron density distribution. The Ne‐aided Abel inversion implements four‐dimensional climatological electron density constructed from previous RO observations, which has the advantage of providing altitudinal information on the horizontal gradient to reduce the retrieval error due to the spherical symmetry assumption of the Abel inversion. The comparisons show that climatological structures are consistent with each other above 300 km altitude. Both the Abel electron density profiles and GIS detect electron density variations during a minor geomagnetic storm that occurred within the study period. Moreover, GIS is further capable of reconstructing the variation of equatorial ionization anomaly crests. Detailed validations of all the three products are carried out using manually scaled digisondeNmF2(hmF2), yielding correlation coefficients of 0.885 (0.885) for both Abel inversions and 0.903 (0.862) for GIS. The results show that both GIS and Ne‐aided Abel are reliable products in studying ionosphere climatology, with the additional advantage of GIS for space weather research and day‐to‐day variations. 
    more » « less
  4. Abstract. Previous studies utilizing the Global Positioning System(GPS) receivers aboard Jason satellites have performed measurements ofplasmasphere electron content (PEC) by determining the total electroncontent (TEC) above these satellites, which are at altitudes of about 1340 km. This study uses similar methods to determine PEC for the Jason-2receiver for 24 July 2011. These PEC values are compared to previousdeterminations of PEC from a chain of ground-based GPS receivers in Africausing the SCORPION method, with a nominal ionosphere–plasmasphere boundaryat 1000 km. The Jason-2 PECs with elevations greater than 60∘were converted to equivalent vertical PEC and compared to SCORPION verticalPEC determinations. In addition, slant (off-vertical) PECs from Jason-2were compared to a small set of nearly co-aligned ground-based slant PECs.The latter comparison avoids any conversion of Jason-2 slant PEC toequivalent vertical PEC, and it can be considered a more representativecomparison. The mean difference between the vertical PEC (ground-basedminus Jason-2 measurements) values is 0.82 ± 0.28 TEC units (1 TEC unit=1016 electrons m−2). Similarly, the mean differencebetween slant PEC values is 0.168 ± 0.924 TEC units. The Jason-2 slantPEC comparison method may provide a reliable determination for theplasmasphere baseline value for the ground-based receivers, especially ifthe ground stations are confined to only midlatitude or low-latituderegions, which can be affected by a non-negligible PEC baseline. 
    more » « less
  5. Abstract A new technique has been developed to determine the high‐latitude electric potential from observed field‐aligned currents (FACs) and modeled ionospheric conductances. FACs are observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), while the conductances are modeled by Sami3 is Also a Model of the Ionosphere (SAMI3). This is a development of the Magnetosphere‐Ionosphere Coupling approach first demonstrated by Merkin and Lyon (2010),https://doi.org/10.1029/2010ja015461. An advantage of using SAMI3 is that the model can be used to predict total electron content (TEC), based on the AMPERE‐derived potential solutions. 23 May 2014 is chosen as a case study to assess the new technique for a moderately disturbed case (min Dst: −36 nT, max AE: 909 nT) with good GPS data coverage. The new AMPERE/SAMI3 solutions are compared against independent GPS‐based TEC observations from the Multi‐Instrument Data Analysis Software (MIDAS) by Mitchell and Spencer (2003), and against Defense Meteorological Satellite Program (DMSP) ion drift data. The comparison shows excellent agreement between the location of the tongue of ionization in the MIDAS GPS data and the AMPERE/SAMI3 potential pattern, and good overall agreement with DMSP drifts. SAMI3 predictions of high‐latitude TEC are much improved when using the AMPERE‐derived potential as compared to Weimer's (2005),https://doi.org/10.1029/2005ja011270model. The two potential models have substantial differences, with Weimer producing an average 77 kV cross‐cap potential versus 60 kV for the AMPERE‐derived potential. The results indicate that the 66‐satellite Iridium constellation provides sufficient resolution of FACs to estimate large‐scale ionospheric convection as it impacts TEC. 
    more » « less