skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A low-cost shutter driver and arbitrary waveform generator for optical switching using a programmable system-on-chip (PSoC) device
We have developed a low-cost mechanical shutter driver with integrated arbitrary waveform generation for optical switching and control using a programmable system-on-chip device. This microcontroller-based device with configurable digital and analog blocks is readily programmed using free software, allowing for easy customization for a variety of applications. Additional digital and analog outputs with arbitrary timings can be used to control a variety of devices, such as additional shutters, acousto-optical modulators, or camera trigger pulses, for complete control and imaging of laser light. Utilizing logic-level control signals, this device can be readily integrated into existing computer control and data acquisition systems for expanded hardware capabilities.  more » « less
Award ID(s):
1944802
PAR ID:
10399751
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
11
ISSN:
0034-6748
Page Range / eLocation ID:
113002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Analog photonic solutions offer unique opportunities to address complex computational tasks with unprecedented performance in terms of energy dissipation and speeds, overcoming current limitations of modern computing architectures based on electron flows and digital approaches. The lack of modularization and lumped element reconfigurability in photonics has prevented the transition to an all-optical analog computing platform. Here, we explore, using numerical simulation, a nanophotonic platform based on epsilon-near-zero materials capable of solving in the analog domain partial differential equations (PDE). Wavelength stretching in zero-index media enables highly nonlocal interactions within the board based on the conduction of electric displacement, which can be monitored to extract the solution of a broad class of PDE problems. By exploiting the experimentally achieved control of deposition technique through process parameters, used in our simulations, we demonstrate the possibility of implementing the proposed nano-optic processor using CMOS-compatible indium-tin-oxide, whose optical properties can be tuned by carrier injection to obtain programmability at high speeds and low energy requirements. Our nano-optical analog processor can be integrated at chip-scale, processing arbitrary inputs at the speed of light. 
    more » « less
  2. We report on the construction and characterization of a low-cost Mach–Zehnder optical interferometer in which quadrature signal detection is achieved by means of polarization control. The device incorporates a generic green laser pointer, home-built photodetectors, 3D-printed optical mounts, a circular polarizer extracted from a pair of 3D movie glasses, and a python-enabled microcontroller for analog-to-digital data acquisition. Components fit inside of a [Formula: see text] space and can be assembled on a budget of less than US$500. The device has the potential to make quadrature interferometry accessible and affordable for instructors, students, and enthusiasts alike. 
    more » « less
  3. We introduce a photonic integrated circuit solution for the direction-of-arrival estimation in the optical frequency band. The proposed circuit is built on discrete sampling of the phasefront of an incident optical beam and its analog processing in a photonic matrix-vector multiplier that maps the angle of arrival into the intensity profile at the output ports. We derive conditions for perfect direction-of-arrival sensing for a discrete set of incident angles and its continuous interpolation and discuss the angular resolution and field-of-view of the proposed device in terms of the number of input and output ports of the matrix multiplier. We show that while, in general, a non-unitary matrix operation is required for perfect direction finding, under certain conditions, it can be approximated with a unitary operation that simplifies the device complexity while coming at the cost of reducing the field of view. The proposed device will enable real-time direction-finding sensing through its ultra-compact design and minimal digital signal processing requirements. 
    more » « less
  4. Abstract High-bandwidth applications, from multi-gigabit communication and high-performance computing to radar signal processing, demand ever-increasing processing speeds. However, they face limitations in signal sampling and computation due to hardware and power constraints. In the microwave regime, where operating frequencies exceed the fastest clock rates, direct sampling becomes difficult, prompting interest in neuromorphic analog computing systems. We present the first demonstration of direct broadband frequency domain computing using an integrated circuit that replaces traditional analog and digital interfaces. This features a Microwave Neural Network (MNN) that operates on signals spanning tens of gigahertz, yet reprogrammed with slow, 150 MBit/sec control bitstreams. By leveraging significant nonlinearity in coupled microwave oscillators, features learned from a wide bandwidth are encoded in a comb-like spectrum spanning only a few gigahertz, enabling easy inference. We find that the MNN can search for bit sequences in arbitrary, ultra-broadband10 GBit/sec digital data, demonstrating suitability for high-speed wireline communication.Notably, it can emulate high-level digital functions without custom on-chip circuits, potentially replacing power-hungry sequential logic architectures. Its ability to track frequency changes over long capture times also allows for determining flight trajectories from radar returns. Furthermore, it serves as an accelerator for radio-frequency machine learning, capable of accurately classifying various encoding schemes used in wireless communication. The MNN achieves true, reconfigurable broadband computation, which has not yet been demonstrated by classical analog modalities, quantum reservoir computers using superconducting circuits, or photonic tensor cores, and avoidsthe inefficiencies of electro-optic transduction. Its sub-wavelength footprint in a Complementary Metal-Oxide-Semiconductor process and sub-200 milliwatt power consumption enable seamless integration as a general-purpose analog neural processor in microwave and digital signal processing chips. 
    more » « less
  5. The quantum matter synthesizer (QMS) is a new quantum simulation platform in which individual particles in a lattice can be resolved and re-arranged into arbitrary patterns. The ability to spatially manipulate ultracold atoms and control their tunneling and interactions at the single-particle level allows full control of a many-body quantum system. We present the design and characterization of the QMS, which integrates into a single ultra-stable apparatus a two-dimensional optical lattice, a moving optical tweezer array formed by a digital micromirror device, and site-resolved atomic imaging. We demonstrate excellent mechanical stability between the lattice and tweezer array with relative fluctuations below 10 nm, diffraction-limited imaging at a resolution of 655 nm, and high-speed real-time control of the tweezer array at a 2.52 kHz refresh rate, which will be adopted to realize fast rearrangement of atoms. The QMS also features new technologies and schemes, such as nanotextured anti-reflective windows and all-optical long-distance transport of atoms. 
    more » « less