skip to main content


Title: Design and construction of a quantum matter synthesizer

The quantum matter synthesizer (QMS) is a new quantum simulation platform in which individual particles in a lattice can be resolved and re-arranged into arbitrary patterns. The ability to spatially manipulate ultracold atoms and control their tunneling and interactions at the single-particle level allows full control of a many-body quantum system. We present the design and characterization of the QMS, which integrates into a single ultra-stable apparatus a two-dimensional optical lattice, a moving optical tweezer array formed by a digital micromirror device, and site-resolved atomic imaging. We demonstrate excellent mechanical stability between the lattice and tweezer array with relative fluctuations below 10 nm, diffraction-limited imaging at a resolution of 655 nm, and high-speed real-time control of the tweezer array at a 2.52 kHz refresh rate, which will be adopted to realize fast rearrangement of atoms. The QMS also features new technologies and schemes, such as nanotextured anti-reflective windows and all-optical long-distance transport of atoms.

 
more » « less
Award ID(s):
2016136
NSF-PAR ID:
10440283
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
8
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  2. We present recent progress towards building a neutral atom quantum computer. We use a new design for a blue-detuned optical lattice to trap single Cs atoms. The lattice is created using a combination of diffractive elements and acousto-optic deflectors (AODs) which give a reconfigurable set of cross-hatched lines. By using AODs, we can vary the number of traps and size of the trapping regions as well as eliminate extraneous traps in Talbot planes. Since this trap uses blue-detuned light, it traps both ground state atoms and atoms excited to the Rydberg state; moreover, by tuning the size of the trapping region, we can make the traps “magic” for a selected Rydberg state. We use an optical tweezer beam for atom rearrangement. When loading atoms into the array, trap sites randomly contain zero or one atoms. Atoms are then moved between different trapping sites using a red-detuned optical tweezer. Optimal atom rearrangement is calculated using the “Hungarian Method”. These rearrangement techniques can be used to create defect-free sub-lattices. Lattice atoms can also be used as a reservoir for a set of selected sites. This allows quick replacement of atoms, and increased data rate, without reloading from a MOT. 
    more » « less
  3. Abstract

    Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single‐particle level. They are considered among the foremost candidates for realizing quantum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, a realistic experimental toolbox for quantum information processing with neutral alkaline‐earth‐like atoms in optical tweezer arrays is described. In particular, a comprehensive and scalable architecture based on a programmable array of alkaline‐earth‐like atoms is proposed, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all‐optical one‐ and two‐qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high‐fidelity register initialization, rapid spin‐exchange gates, and error detection in read‐out. As a benchmark and application example, the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters is computed, which can be used to distribute entanglement between remote atoms within the array.

     
    more » « less
  4. Abstract

    Optically trapped laser-cooled polar molecules hold promise for new science and technology in quantum information and quantum simulation. Large numerical aperture optical access and long trap lifetimes are needed for many studies, but these requirements are challenging to achieve in a magneto-optical trap (MOT) vacuum chamber that is connected to a cryogenic buffer gas beam source, as is the case for all molecule laser cooling experiments so far. Long distance transport of molecules greatly eases fulfilling these requirements as molecules are placed into a region separate from the MOT chamber. We realize a fast transport method for ultracold molecules based on an electronically focus-tunable lens combined with an optical lattice. The high transport speed is achieved by the 1D red-detuned optical lattice, which is generated by interference of a focus-tunable laser beam and a focus-fixed laser beam. Efficiency of 48(8)% is realized in the transport of ultracold calcium monofluoride (CaF) molecules over 46 cm distance in 50 ms, with a moderate heating from 32(2) μK to 53(4) μK. Positional stability of the molecular cloud allows for stable loading of an optical tweezer array with single molecules.

     
    more » « less
  5. Abstract

    Tailored nanostructures provide at-will control over the properties of light, with applications in imaging and spectroscopy. Active photonics can further open new avenues in remote monitoring, virtual or augmented reality and time-resolved sensing. Nanomaterials withχ(2)nonlinearities achieve highest switching speeds. Current demonstrations typically require a trade-off: they either rely on traditionalχ(2)materials, which have low non-linearities, or on application-specific quantum well heterostructures that exhibit a highχ(2)in a narrow band. Here, we show that a thin film of organic electro-optic molecules JRD1 in polymethylmethacrylate combines desired merits for active free-space optics: broadband record-high nonlinearity (10-100 times higher than traditional materials at wavelengths 1100-1600 nm), a custom-tailored nonlinear tensor at the nanoscale, and engineered optical and electronic responses. We demonstrate a tuning of optical resonances by Δλ = 11 nm at DC voltages and a modulation of the transmitted intensity up to 40%, at speeds up to 50 MHz. We realize 2 × 2 single- and 1 × 5 multi-color spatial light modulators. We demonstrate their potential for imaging and remote sensing. The compatibility with compact laser diodes, the achieved millimeter size and the low power consumption are further key features for laser ranging or reconfigurable optics.

     
    more » « less