skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pinpointing the Mechanism of Magnetic Enhancement in Modern Soils Using High‐Resolution Magnetic Field Imaging
Abstract In well‐buffered modern soils, higher annual rainfall is associated with enhanced soil ferrimagnetic mineral content, especially of ultrafine particles that result in distinctive rock magnetic properties. Hence, paleosol magnetism has been widely used as a paleoprecipitation proxy. Identifying the dominant mechanism(s) of magnetic enhancement in a given sample is critical for reliable inference of paleoprecipitation. Here, we use high‐resolution magnetic field and electron microscopy to identify the grain‐scale setting and formation pathway of magnetic enhancement in two modern soils developed in higher (∼580 mm/y) and lower (∼190 mm/y) precipitation settings from the Qilianshan Range, China. We found that both soils contain 1–30 μm aeolian Fe‐oxide grains with indistinguishable rock magnetic properties, while the higher‐precipitation soil contains an additional population of ultrafine (<150 nm) magnetically distinct magnetite grains. We show that the in situ precipitation of these ultrafine particles, likely during wet‐dry cycling, is the only significant magnetic enhancement mechanism in this soil. These results demonstrate the potential of quantum diamond microscope magnetic microscopy to extract magnetic information from distinct, even intimately mixed, grain populations. This information can be used to evaluate the contribution of distinct enhancement mechanisms to the total magnetization.  more » « less
Award ID(s):
2202772
PAR ID:
10399882
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
24
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The type-section of the Blackwater Draw Formation (BDF) consists of a series of five paleosol horizons developed on eolian deposits and an overlying surficial soil. Previous work has shown that magnetic properties (e.g., χ, ARM, and IRM) as a function of depth in this type-section, display both magnetically enhanced and magnetically depleted signals for different paleosols. To better understand the magnetic mineralogy responsible for these varying responses, various rock-magnetic experiments, scanning electron microscopy, and Mössbauer spectroscopy were conducted on representative samples from the six soil units which constitute the BDF type-section. Our results show that sub-micron hematite [with a minor contribution from single-domain sized hematite (Hc = ∼500 mT) dominates all the soils in terms of weight percent concentration. Whereas, low coercivity (Hc = ∼35 mT or less) magnetite/maghemitized-magnetite grains, largely in the PSD state (Mr/Ms=∼0.14 +/– 0.03588, Hcr/Hc=∼2.68 +/– 0.298789), dominate the magnetic signal. Magnetically depleted soils show a relatively higher proportion of goethite, while magnetically enhanced soils show an increased contribution from SP/SSD magnetite/maghemite phases.By combining our data-set with geochemically-derived climofunctions, we have correlated the magnetically preserved, depleted, and enhanced sections of the type-section to three distinct environmental phases (I-III). The basal sediments of Phase I displays relatively homogenous (neither enhanced nor depleted) magnetic properties due to relatively arid conditions and minimal alteration of southerly derive eolian sands. Conversely, Phase II-III represents a change in weathering intensities and provenance, resulting in a mix of southerly derived sands and northerly derived silts. Phase II, experienced greater precipitation levels, resulting in the dissolution of Fe-oxide phases and thus magnetic depletion. The uppermost Phase III experienced intermediate precipitation intensities resulting in magnetic enhancement.Using previously published age models we tentatively interpret these changing environmental conditions to be influenced by the Middle-Pleistocene Transition (1.2-0.7 Ma), where the Earth’s climatic cycles shifted from a ∼41 kyr to ∼100 kyr cycles. However, ambiguities persist due to uncertainties in the currently published age model. Due to the complexity of the magnetic signal, we recommend future studies utilize a holistic approach, incorporating rock-magnetic, geochemical, and microscopy observations for more accurate reconstruction of regional paleoenvironments. 
    more » « less
  2. Fires are an integral part of many terrestrial ecosystems and have a strong impact on soil properties. While reports of topsoil magnetic enhancement after fires vary widely, recent evidence suggests that plant ashes provide the most significant source of magnetic enhancement after burning. To investigate the magnetic properties of burnt plant material, samples of individual plant species from Iceland and Germany were cleaned and combusted at various temperatures prior to rock magnetic and geochemical characterization. Mass-normalized saturation magnetization values for burnt plant residues increase with the extent of burning in nearly all samples. However, when normalized to the loss on ignition, fewer than half of ash and charcoal samples display magnetic enhancement relative to intact plant material. Thus, while magnetic mineral concentrations generally increase, changes in the total amount of magnetic material are much more variable. Elemental analyses of Icelandic samples reveal that both total plant Fe and saturation magnetization are strongly correlated with Ti and Al, indicating that most of the Fe-bearing magnetic phases originate from inorganic material such as soil and atmospheric dust. Electron microscopy confirmed that inorganic particulate matter remains on most plant surfaces after cleaning. Plants with more textured leaf surfaces retain more dust, and ash from these samples tend to exhibit higher saturation magnetization and metal concentrations. Magnetic properties of plant ash therefore result from the thermal transformation of Fe in both organic compounds and inorganic particulate matter, which become concentrated on a mass basis when organic matter is combusted. These results indicate that the soil magnetic response to burning will vary among sites and regions as a function of 1) fire intensity, 2) the local composition of dust and soil particles on leaf surfaces, and 3) vegetation type and consequent differences in leaf morphologies. 
    more » « less
  3. Abstract Anthropogenic climate change has significant impacts at the ecosystem scale including widespread drought, flooding, and other natural disasters related to precipitation extremes. To contextualize modern climate change, scientists often look to ancient climate changes, such as shifts in ancient precipitation ranges. Previous studies have used fossil leaf organic geochemistry and paleosol inorganic chemistry as paleoprecipitation proxies, but have largely ignored the organic soil layer, which acts as a bridge between aboveground biomass and belowground inorganic carbon accumulation, as a potential recorder of precipitation. We investigate the relationship between stable carbon isotope values in soil organic matter (δ13CSOM) and a variety of seasonal and annual climate parameters in modern ecosystems and find a statistically significant relationship between δ13CSOMvalues and mean annual precipitation (MAP). After testing the relationship between actual and reconstructed precipitation values in modern systems, we test this potential paleoprecipitation proxy in the geologic record by comparing precipitation values reconstructed using δ13CSOMto other reconstructed paleoprecipitation estimates from the same paleosols. This study provides a promising new proxy that can be applied to ecosystems post‐Devonian (∼420 Ma) to the Miocene (∼23 Ma), and in mixed C3/C4ecosystems in the geologic record with additional paleobotanical and palynological information. It also extends paleoprecipitation reconstruction to more weakly developed paleosol types, such as those lacking B‐ horizons, than previous inorganic proxies and is calibrated for wetter environments. 
    more » « less
  4. Abstract Speleothems are mineral deposits capable of recording detrital and/or chemical remanent magnetization at annual timescales. They can offer high‐resolution paleomagnetic records of short‐term variations in Earth's magnetic field, crucial for understanding the evolution of the dynamo. Owing to limitations on the magnetic moment sensitivity of commercial cryogenic rock magnetometers (∼10−11 Am2), paleomagnetic studies of speleothems have been limited to samples with volumes of several hundreds of mm3, averaging tens to hundreds of years of magnetic variation. Nonetheless, smaller samples (∼1–10 mm3) can be measured using superconducting quantum interference device (SQUID) microscopy, with a sensitivity better than ∼10−15 Am2. To determine the application of SQUID microscopy for obtaining robust high‐resolution records from small‐volume speleothem samples, we analyzed three different stalagmites collected from Lapa dos Morcegos Cave (Portugal), Pau d'Alho Cave (Brazil), and Crevice Cave (United States). These stalagmites are representative of a range of magnetic properties and have been previously studied with conventional rock magnetometers. We show that by using SQUID microscopy we can achieve a five‐fold improvement in temporal resolution for samples with higher abundances of magnetic carriers (e.g., Pau d'Alho Cave and Lapa dos Morcegos Cave). In contrast, speleothems with low abundances of magnetic carriers (e.g., Crevice Cave) do not benefit from higher resolution analysis and are best analyzed using conventional rock magnetometers. Overall, by targeting speleothem samples with high concentrations of magnetic carriers we can increase the temporal resolution of magnetic records, setting the stage for resolving geomagnetic variations at short time scales. 
    more » « less
  5. Abstract Particulate matter (PM) concentration levels in the London Underground (LU) are higher than London background levels and beyond World Health Organization (WHO) defined limits. Wheel, track, and brake abrasion are the primary sources of particulate matter, producing predominantly Fe-rich particles that make the LU microenvironment particularly well suited to study using environmental magnetism. Here we combine magnetic properties, high-resolution electron microscopy, and electron tomography to characterize the structure, chemistry, and morphometric properties of LU particles in three dimensions with nanoscale resolution. Our findings show that LU PM is dominated by 5–500 nm particles of maghemite, occurring as 0.1–2 μm aggregated clusters, skewing the size-fractioned concentration of PM artificially to larger sizes when measured with traditional monitors. Magnetic properties are largely independent of the PM filter size (PM 10 , PM 4 , and PM 2.5 ), and demonstrate the presence of superparamagnetic (< 30 nm), single-domain (30–70 nm), and vortex/pseudo-single domain (70–700 nm) signals only (i.e., no multi-domain particles > 1 µm). The oxidized nature of the particles suggests that PM exposure in the LU is dominated by resuspension of aged dust particles relative to freshly abraded, metallic particles from the wheel/track/brake system, suggesting that periodic removal of accumulated dust from underground tunnels might provide a cost-effective strategy for reducing exposure. The abundance of ultrafine particles identified here could have particularly adverse health impacts as their smaller size makes it possible to pass from lungs to the blood stream. Magnetic methods are shown to provide an accurate assessment of ultrafine PM characteristics, providing a robust route to monitoring, and potentially mitigating this hazard. 
    more » « less