Abstract In astronomical environments, the high-temperature emission of plasma mainly depends on ion charge states, requiring accurate analysis of the ionization and recombination processes. For various phenomena involving energetic particles, non-Maxwellian distributions of electrons exhibiting high-energy tails can significantly enhance the ionization process. Therefore, accurately computing ionization and recombination rates with non-Maxwellian electron distributions is essential for emission diagnostic analysis. In this work, we report two methods for fitting various non-Maxwellian distributions by using the Maxwellian decomposition strategy. For standardκ-distributions, the calculated ionization and recombination rate coefficients show comparable accuracy to other public packages. Additionally, our methods support arbitrary electron distributions and can be easily extended to updated atomic databases. We apply the above methods to two specific non-Maxwellian distribution scenarios: (i) accelerated electron distributions due to magnetic reconnection revealed in a combined MHD–particle simulation; and (ii) the high-energy truncatedκ-distribution predicted by the exospheric model of the solar wind. During the electron acceleration process, we show that the ionization rates of high-temperature iron ions increase significantly compared to their initial Maxwellian distribution, while the recombination rates may decrease due to the electron distribution changes in low-energy ranges. This can potentially lead to an overestimation of the plasma temperature when analyzing the Fe emission lines under the Maxwellian distribution assumption. For the truncatedκ-distribution in the solar wind, our results show that the ionization rates are lower than those for the standardκ-distribution, while the recombination rates remain similar. This leads to an overestimation of the plasma temperature when assuming aκ-distribution. 
                        more » 
                        « less   
                    
                            
                            Tuning electrical properties in Ga2O3 polymorphs induced with ion beams
                        
                    
    
            Ion beam fabrication of metastable polymorphs of Ga2O3, assisted by the controllable accumulation of the disorder in the lattice, is an interesting alternative to conventional deposition techniques. However, the adjustability of the electrical properties in such films is unexplored. In this work, we investigated two strategies for tuning the electron concentration in the ion beam created metastable κ-polymorph: adding silicon donors by ion implantation and adding hydrogen via plasma treatments. Importantly, all heat treatments were limited to ≤600 °C, set by the thermal stability of the ion beam fabricated polymorph. Under these conditions, silicon doping did not change the high resistive state caused by the iron acceptors in the initial wafer and residual defects accumulated upon the implants. Conversely, treating samples in a hydrogen plasma converted the ion beam fabricated κ-polymorph to n-type, with a net donor density in the low 1012 cm−3 range and dominating deep traps near 0.6 eV below the conduction band. The mechanism explaining this n-type conductivity change may be due to hydrogen forming shallow donor complexes with gallium vacancies and/or possibly passivating a fraction of the iron acceptors responsible for the high resistivity in the initial wafers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1856662
- PAR ID:
- 10399904
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 133
- Issue:
- 9
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.more » « less
- 
            null (Ed.)The use of high κ dielectrics lowers the operating voltage in organic field-effect transistors (FETs). Polymer ferroelectrics open the path not just for high κ values but allow processing of the dielectric films via electrical poling. Poled ferroelectric dielectrics in p-type organic FETs was seen to improve carrier mobility and reduce leakage current when compared to unpoled devices using the same dielectric. For n-type FETs, solution-processed ZnO films provide a viable low-cost option. UV–ozone-treated ZnO films was seen to improve the FET performance due to the filling of oxygen vacancies. P-type FETs were fabricated using the ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as the dielectric along with a donor–acceptor polymer based on diketopyrrolopyrrole (DPP-DTT) as the semiconductor layer. The DPP-DTT FETs yield carrier mobilities upwards of 0.4 cm2/Vs and high on/off ratios when the PVDF-TrFE layer is electrically poled. For n-type FETs, UV–ozone-treated sol–gel ZnO films on SiO2 yield carrier mobilities of 10−2 cm2/Vs. DPP-DTT-based p- and ZnO-based n-type FETs were used in a complementary voltage inverter circuit, showing promising characteristic gain. A basic inverter model was used to simulate the inverter characteristics, using parameters from the individual FET characteristics.more » « less
- 
            With the advances in nanofabrication technology, horizontally aligned and well-defined nitrogen-doped ultrananocrystalline diamond nanostripes can be fabricated with widths in the order of tens of nanometers. The study of the size-dependent electron transport properties of these nanostructures is crucial to novel electronic and electrochemical applications. In this paper, 100 nm thick n-type ultrananocrystalline diamond thin films were synthesized by microwave plasma-enhanced chemical vapor deposition method with 5% N2 gas in the plasma during the growth process. Then the nanostripes were fabricated using standard electron beam lithography and reactive ion etching techniques. The electrical transport properties of the free-standing single nanostripes of different widths from 75 to 150 nm and lengths from 1 to 128 μm were investigated. The study showed that the electrical resistivity of the n-type ultrananocrystalline diamond nanostripes increased dramatically with the decrease in the nanostripe width. The nanostripe resistivity was nearly doubted when the width was reduced from 150 nm to 75 nm. The size-dependent variability in conductivity could originate from the imposed diffusive scattering of the nanostripe surfaces which had a further compounding effect to reinforce the grain boundary scattering.more » « less
- 
            Lanza, Mario (Ed.)A conformal and controlled semiconductor doping is needed for applications in next generation nanoscale devices,low contact resistivity metal semiconductor junctions such as selective emitters in solar cells. Molecular monolayer doping (MLD) in silicon is a novel technique based on the formation of self-assembled monolayer of dopant – containing molecules on surface of crystalline silicon, followed by rapid thermal anneal. The technique is capable of forming ultra-shallow junctions with high atomic accuracy and minimum defects in silicon. A container and process was developed which successfully doped 6 in. diameter silicon wafers using MLD for the in-house CMOS fabrication facility. The phosphorus monolayer is grafted on hydrogen terminated p-type silicon followed by rapid thermal anneal. Average sheet resistance ~670 Ω/sq. and junction depth ~25 nm are achieved. N + P junctions are fabricated using MLD and current-voltage characteristics are measured and analyzed using unified diode model.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
