skip to main content


Title: Waldo: A Private Time-Series Database from Function Secret Sharing
Applications today rely on cloud databases for storing and querying time-series data. While outsourcing storage is convenient, this data is often sensitive, making data breaches a serious concern. We present Waldo, a time-series database with rich functionality and strong security guarantees: Waldo supports multi-predicate filtering, protects data contents as well as query filter values and search access patterns, and provides malicious security in the 3-party honest-majority setting. In contrast, prior systems such as Timecrypt and Zeph have limited functionality and security: (1) these systems can only filter on time, and (2) they reveal the queried time interval to the server. Oblivious RAM (ORAM) and generic multiparty computation (MPC) are natural choices for eliminating leakage from prior work, but both of these are prohibitively expensive in our setting due to the number of roundtrips and bandwidth overhead, respectively. To minimize both, Waldo builds on top of function secret sharing, enabling Waldo to evaluate predicates non-interactively. We develop new techniques for applying function secret sharing to the encrypted database setting where there are malicious servers, secret inputs, and chained predicates. With 32-core machines, Waldo runs a query with 8 range predicates over 2 18 records in 3.03s, compared to 12.88s or an MPC baseline and 16.56s for an ORAM baseline. Compared to Waldo, the MPC baseline uses 9−82× more bandwidth between servers (for different numbers of records), while the ORAM baseline uses 20−152× more bandwidth between the client and server(s) (for different numbers of predicates).  more » « less
Award ID(s):
1730628
NSF-PAR ID:
10399985
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 IEEE Symposium on Security and Privacy (SP)
Page Range / eLocation ID:
2450 to 2468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less
  2. We present TVA, a multi-party computation (MPC) system for secure analytics on secret-shared time series data. TVA achieves strong security guarantees in the semi-honest and malicious settings, and high expressivity by enabling complex analytics on inputs with unordered and irregular timestamps. TVA is the first system to support arbitrary composition of oblivious window operators, keyed aggregations, and multiple filter predicates, while keeping all data attributes private, including record timestamps and user-defined values in query predicates. At the core of the TVA system lie novel protocols for secure window assignment: (i) a tumbling window protocol that groups records into fixed-length time buckets and (ii) two session window protocols that identify periods of activity followed by periods of inactivity. We also contribute a new protocol for secure division with a public divisor, which may be of independent interest. We evaluate TVA on real LAN and WAN environments and show that it can efficiently compute complex window-based analytics on inputs of 2^22 records with modest use of resources. When compared to the state-of-the-art, TVA achieves up to 5.8× lower latency in queries with multiple filters and two orders of magnitude better performance in window aggregation. 
    more » « less
  3. Private information retrieval (PIR) enables clients to query and retrieve data from untrusted servers without the untrusted servers learning which data was retrieved. In this paper, we present a new class of multi-server PIR protocols, which we call heterogeneous PIR (HPIR). In such multi-server PIR protocols, the computation and communication overheads imposed on the PIR servers are non-uniform, i.e., some servers handle higher computation/communication burdens than the others. This enables heterogeneous PIR protocols to be suitable for a range of new PIR applications. What enables us to enforce such heterogeneity is a unique PIR-tailored secret sharing algorithm that we leverage in building our PIR protocol. We have implemented our HPIR protocol and evaluated its performance in comparison with regular (i.e., homogenous) PIR protocols. Our evaluations demonstrate that a querying client can trade off the computation and communication loads of the (heterogeneous) PIR servers by adjusting some parameters. For example in a two-server scenario with a heterogeneity degree of 4/1, to retrieve a 456KB file from a 0.2GB database, the rich (i.e., resourceful) PIR server will do 1.1 seconds worth of computation compared to 0.3 seconds by the poor (resource-constrained) PIR server; this is while each of the servers would do the same 1 seconds of computation in a homogeneous setting. Also, for this given example, our HPIR protocol will impose a 912KB communication bandwidth on the rich server compared to 228KB on the poor server (by contrast to 456KB overheads on each of the servers for a traditional homogeneous design). 
    more » « less
  4. Private Information Retrieval (PIR) allows several clients to query a database held by one or more servers, such that the contents of their queries remain private. Prior PIR schemes have achieved sublinear communication and computation by leveraging computational assumptions, federating trust among many servers, relaxing security to permit differentially private leakage, refactoring effort into an offline stage to reduce online costs, or amortizing costs over a large batch of queries. In this work, we present an efficient PIR protocol that combines all of the above techniques to achieve constant amortized communication and computation complexity in the size of the database and constant client work. We leverage differentially private leakage in order to provide better trade-offs between privacy and efficiency. Our protocol achieves speedups up to and exceeding 10x in practical settings compared to state of the art PIR protocols, and can scale to batches with hundreds of millions of queries on cheap commodity AWS machines. Our protocol builds upon a new secret sharing scheme that is both incremental and non-malleable, which may be of interest to a wider audience. Our protocol provides security up to abort against malicious adversaries that can corrupt all but one party. 
    more » « less
  5. Oblivious Random Access Machine (ORAM) enables a client to access her data without leaking her access patterns. Existing client-efficient ORAMs either achieve O(log N) client-server communication blowup without heavy computation, or O(1) blowup but with expensive homomorphic encryptions. It has been shown that O(log N) bandwidth blowup might not be practical for certain applications, while schemes with O(1) communication blowup incur even more delay due to costly homomorphic operations. In this paper, we propose a new distributed ORAM scheme referred to as Shamir Secret Sharing ORAM (S3ORAM), which achieves O(1) client-server bandwidth blowup and O(1) blocks of client storage without relying on costly partial homomorphic encryptions. S3ORAM harnesses Shamir Secret Sharing, tree-based ORAM structure and a secure multi-party multiplication protocol to eliminate costly homomorphic operations and, therefore, achieves O(1) clientserver bandwidth blowup with a high computational efficiency. We conducted comprehensive experiments to assess the performance of S3ORAM and its counterparts on actual cloud environments, and showed that S3ORAM achieves three orders of magnitude lower end-to-end delay compared to alternatives with O(1) client communication blowup (Onion-ORAM), while it is one order of magnitude faster than Path-ORAM for a network with a moderate bandwidth quality. We have released the implementation of S3ORAM for further improvement and adaptation. 
    more » « less