skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Morphological and Molecular Evidence Support Elevating Erythroxylum macrophyllum var. savannarum (Erythroxylaceae) to Specific Status
Erythroxylum macrophyllum is a morphologically variable and widely distributed species complex in Central and South America with several sub-specific taxa and numerous species included in its synonymy. A single variety grows in the Colombo-Venezuelan savanna region which can be distinguished from the rest of the E. macrophyllum complex by the size of leaves, cataphyll and stipule characteristics, and shape of calyx lobes. A molecular phylogeny reconstructed from 519 nuclear genes also reveals that the savanna variety is more closely related to E. acuminatum and E. pauciflorum than E. macrophyllum. This phylogenomic evidence also suggests Erythroxylum sect. Macrocalyx, to which E. macrophyllum belongs, is a polyphyletic taxonomic section. We thus propose elevating this variety to specific status, as Erythroxylum savannarum. We provide an updated taxonomic description, information about its habitat and distribution, and justify its informal IUCN cat- egorization of Near Threatened (NT)  more » « less
Award ID(s):
2010821
PAR ID:
10400004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Systematic botany
Volume:
47
Issue:
2
ISSN:
0363-6445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although savanna woody encroachment has become a global phenomenon, relatively little is known about its effects on multiple dimensions and levels of savanna biodiversity.Using a combination of field surveys, a species‐level phylogeny, and functional metrics drawn from a morphological dataset, we evaluated how the progressive increase in tree cover in a fire‐suppressed savanna landscape affects the taxonomic, functional, and phylogenetic diversity of neotropical ant communities, at both the alpha and beta levels. Ants were sampled along an extensive tree cover gradient, ranging from open savannas to forests established in former savanna areas.Variation in tree cover had a significant influence on all facets of diversity at the beta level, whereas at the alpha level tree cover variation affected the taxonomic and functional but not the phylogenetic diversity of the ant communities.In general, ant community responses to variation in tree cover were largely non‐linear as differences in taxonomic alpha diversity and in the taxonomic, functional, and phylogenetic composition of the sampled communities were often much stronger at the savanna/forest transition than at any other part of the gradient. This indicates that savanna ant communities switch rapidly to an alternative state once the savanna turns into forest.Ant communities in the newly formed forest areas lacked many of the species typical of the savanna habitats, suggesting that the maintenance of a fire suppression policy is likely to result in a decrease in ant diversity and in the homogenisation of the ant fauna at the landscape scale. 
    more » « less
  2. During the development of the taxonomic treatment of Ernestia we came across a taxonomic novelty and a species for which taxonomic verification was needed from Colombia. Herein, we propose Ernestia rheophytica a new species belonging to the sensu stricto clade of the genus, and clarify the identity of Acisanthera goudotii, now treated as E. goudotii. We also clarify the status of the original material of E. goudotii and propose the lectotypification of E. ovata and its synonymization under E. goudotii. Ernestia rheophytica, as the name indicates, is a rheophytic species, a rare habit in Melastomataceae, especially in Marcetieae. 
    more » « less
  3. Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractableEntomophthora muscaeisolate that infects fruit flies. OurE. muscaeassembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find thatE. muscaeand its closest allies possess genes that are likely homologs to the blue-light sensorwhite-collar 1, aNeurospora crassagene that has a well-established role in maintaining circadian rhythms. We uncover evidence thatE. muscaediverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent withE. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within theE. muscaespecies complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi. 
    more » « less
  4. Savanna plant communities are highly diverse, characterized by an open-canopy structure with rich herbaceous diversity, and maintained by frequent low-intensity fire and grazing. Due to habitat loss and fragmentation, savannas are globally threatened, with less than 1% of former oak savanna land cover found in the Midwestern United States remaining. In remnant oak savannas, loss of fire and grazing has led to woody encroachment and canopy closure over the past century with cascading consequences for the taxonomic composition. Whether these taxonomic changes can be broadly predicted using species functional traits (morpho-physio-phenological characteristics that impact the fitness of a species) is a key question. We ask whether the impacts of woody encroachment on herbaceous species can be predicted from species’ abilities to persist (avoid extinction) and disperse (colonize new areas). Specifically, we pair persistence traits (e.g., clonality, belowground storage) and dispersal traits (e.g., seed mass, dispersal mode, flowering height) with a rare 60-year dataset from oak savannas in Wisconsin, USA to understand how the representation of these traits has changed in the herbaceous community over time. Over 60 years, change in species composition was explained both by dispersal abilities and persistence traits; small-seeded species reliant on unassisted dispersal and moderately clonal species experienced the greatest losses. These changes in functional composition are likely due to increased woody encroachment, which may impede propagule production and movement. Restoration efforts need to prioritize species that are dispersal limited and those that create fine fuels, which aid the persistence of fire-maintained open habitat savannas. 
    more » « less
  5. Abstract In this study, we infer genus-level relationships within shrikes (Laniidae), crows (Corvidae), and their allies using ultraconserved elements (UCEs). We confirm previous results of the Crested Shrikejay (Platylophus galericulatus) as comprising its own taxonomic family and find strong support for its sister relationship to laniid shrikes. We also find strong support that the African-endemic genus Eurocephalus, which comprises two allopatric species (E. ruppelli and E. anguitimens), are not “true-shrikes”. We propose elevating the white-crowned shrikes to their own family, Eurocephalidae. 
    more » « less