skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sketching Approximability of (Weak) Monarchy Predicates
We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In particular, we explore the approximability of monarchy-like functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying predicate is a pure monarchy function on k variables have no non-trivial sketching approximation algorithm in o(√n) space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are non-trivially approximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computer-aided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.  more » « less
Award ID(s):
2152413
PAR ID:
10400120
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Chakrabarti, Amit; Swamy, Chaitanya
Date Published:
Journal Name:
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, {APPROX/RANDOM} 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A constraint satisfaction problem (CSP),\(\textsf {Max-CSP}(\mathcal {F})\), is specified by a finite set of constraints\(\mathcal {F}\subseteq \lbrace [q]^k \rightarrow \lbrace 0,1\rbrace \rbrace\)for positive integersqandk. An instance of the problem onnvariables is given bymapplications of constraints from\(\mathcal {F}\)to subsequences of thenvariables, and the goal is to find an assignment to the variables that satisfies the maximum number of constraints. In the (γ ,β)-approximation version of the problem for parameters 0 ≤ β ≤ γ ≤ 1, the goal is to distinguish instances where at least γ fraction of the constraints can be satisfied from instances where at most β fraction of the constraints can be satisfied. In this work, we consider the approximability of this problem in the context of sketching algorithms and give a dichotomy result. Specifically, for every family\(\mathcal {F}\)and every β < γ, we show that either a linear sketching algorithm solves the problem in polylogarithmic space or the problem is not solvable by any sketching algorithm in\(o(\sqrt {n})\)space. In particular, we give non-trivial approximation algorithms using polylogarithmic space for infinitely many constraint satisfaction problems. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case ofq=k=2, where we get a dichotomy, and the case when the satisfying assignments of the constraints of\(\mathcal {F}\)support a distribution on\([q]^k\)with uniform marginals. Prior to this work, other than sporadic examples, the only systematic classes of CSPs that were analyzed considered the setting of Boolean variablesq= 2, binary constraintsk=2, and singleton families\(|\mathcal {F}|=1\)and only considered the setting where constraints are placed on literals rather than variables. Our positive results show wide applicability of bias-based algorithms used previously by [47] and [41], which we extend to include richer norm estimation algorithms, by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [56], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results. In particular, previous works used Fourier analysis over the Boolean cube to initiate their results and the results seemed particularly tailored to functions on Boolean literals (i.e., with negations). Our techniques surprisingly allow us to get to generalq-ary CSPs without negations by appealing to the same Fourier analytic starting point over Boolean hypercubes. 
    more » « less
  2. Chakrabarti, Amit; Swamy, Chaitanya (Ed.)
    A Boolean maximum constraint satisfaction problem, Max-CSP(f), is specified by a predicate f:{-1,1}^k → {0,1}. An n-variable instance of Max-CSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ n-space streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ n-space sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, Max-CSP(f) is (α(f)-ε)-approximable by an O(log n)-space linear sketching algorithm, but (α(f)+ε)-approximation sketching algorithms require Ω(√n) space. In this work, we give closed-form expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{-(k-1)} (1-k^{-2})^{(k-1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2-o(1))2^{-k}-approximated by O(log n)-space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{-k}-approximations require Ω(n) space! We also resolve the ratio for the "at-least-(k-1)-1’s" function for all even k; the "exactly-(k+1)/2-1’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closed-form expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddle-point" properties of this dichotomy. Separately, for all threshold functions, we give optimal "bias-based" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ n-space streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})-ε)-approximations in o(√ n) space. 
    more » « less
  3. Leonardi, Stefano; Gupta, Anupam (Ed.)
    We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on n variables taking values in {0,…,q−1}, we prove that improving over the trivial approximability by a factor of q requires Ω(n) space even on instances with O(n) constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires Ω(n) space. The key technical core is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q problem, which is the Max CSP problem where every constraint is given by a system of k−1 linear equations mod q over k variables. Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the MaxCut problem in graphs. MaxCut corresponds roughly to the case of Max k-LIN-mod q with k=q=2. For general CSPs in the streaming setting, prior results only yielded Ω(√n) space bounds. In particular no linear space lower bound was known for an approximation factor less than 1/2 for any CSP. Extending the work of Kapralov and Krachun to Max k-LIN-mod q to k>2 and q>2 (while getting optimal hardness results) is the main technical contribution of this work. Each one of these extensions provides non-trivial technical challenges that we overcome in this work. 
    more » « less
  4. The Unique Games Conjecture has pinned down the approximability of all constraint satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent in the Unique Games Conjecture. This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover that we call V Label Cover . Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we prove the following implications: • There is an absolute constant c 0 such that for k ≥ 3, given a satisfiable instance of Boolean k -CSP, it is hard to find an assignment satisfying more than c 0 k 2 /2 k fraction of the constraints. • Given a k -uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q -strongly colorable or has no independent set with an ε fraction of vertices, where q =⌈ k +√ k -1/2⌉. • Given a k -uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is ( k -1)-rainbow colorable or has no independent set with an ε fraction of vertices. 
    more » « less
  5. Abstract An ordering constraint satisfaction problem (OCSP) is defined by a family$$\mathcal F$$ F of predicates mapping permutations on$$\{1,\ldots,k\}$$ { 1 , , k } to$$\{0,1\}$$ { 0 , 1 } . An instance of ($$\mathcal F$$ F ) onnvariables consists of a list of constraints, each consisting of a predicate from$$\mathcal F$$ F applied onkdistinct variables. The goal is to find an ordering of thenvariables that maximizes the number of constraints for which the induced ordering on thekvariables satisfies the predicate. OCSPs capture well-studied problems including ‘maximum acyclic subgraph’ () and “maximum betweenness”. In this work, we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We show that for every$$\mathcal F$$ F , ($$\mathcal F$$ F ) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of , our result shows that for every$$\epsilon>0$$ ϵ > 0 , is not$$(1/2+\epsilon)$$ ( 1 / 2 + ϵ ) -approximable in o(n) space. The previous best inapproximability result, due to Guruswami & Tao (2019), only ruled out 3/4-approximations in$$o(\sqrt n)$$ o ( n ) space. Our results build on recent works of Chou et al. (2022b, 2024) who provide a tight, linear-space inapproximability theorem for a broad class of “standard” (i.e., non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate standard CSPs (one for every alphabet sizeq) from any given OCSP and applying their theorem to this family of CSPs. To convert the resulting hardness results for standard CSPs back to our OCSP, we show that the hard instances from this earlier theorem have the following “partition expansion” property with high probability: For every partition of thenvariables into small blocks, for most of the constraints, all variables are in distinct blocks. 
    more » « less