Correlated oxides can exhibit complex magnetic patterns. Understanding how magnetic domains form in the presence of disorder and their robustness to temperature variations has been of particular interest, but atomic scale insight has been limited. We use spin-polarized scanning tunneling microscopy to image the evolution of spin-resolved modulations originating from antiferromagnetic (AF) ordering in a spin-orbit Mott insulator perovskite iridate Sr 3 Ir 2 O 7 as a function of chemical composition and temperature. We find that replacing only several percent of lanthanum for strontium leaves behind nanometer-scale AF puddles clustering away from lanthanum substitutions preferentially located in the middle strontium oxide layer. Thermal erasure and reentry into the low-temperature ground state leads to a spatial reorganization of the AF puddles, which nevertheless maintain scale-invariant fractal geometry in each configuration. Our experiments reveal multiple stable AF configurations at low temperature and shed light onto spatial fluctuations of the AF order around atomic scale disorder in electron-doped Sr 3 Ir 2 O 7 .
more »
« less
Antiferromagnetic excitonic insulator state in Sr3Ir2O7
Abstract Excitonic insulators are usually considered to form via the condensation of a soft charge mode of bound electron-hole pairs. This, however, presumes that the soft exciton is of spin-singlet character. Early theoretical considerations have also predicted a very distinct scenario, in which the condensation of magnetic excitons results in an antiferromagnetic excitonic insulator state. Here we report resonant inelastic x-ray scattering (RIXS) measurements of Sr3Ir2O7. By isolating the longitudinal component of the spectra, we identify a magnetic mode that is well-defined at the magnetic and structural Brillouin zone centers, but which merges with the electronic continuum in between these high symmetry points and which decays upon heating concurrent with a decrease in the material’s resistivity. We show that a bilayer Hubbard model, in which electron-hole pairs are bound by exchange interactions, consistently explains all the electronic and magnetic properties of Sr3Ir2O7indicating that this material is a realization of the long-predicted antiferromagnetic excitonic insulator phase.
more »
« less
- Award ID(s):
- 1848269
- PAR ID:
- 10363051
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Excitonic insulator is a coherent electronic phase that results from the formation of a macroscopic population of bound particle-hole pairs—excitons. With only a few candidate materials known, the collective excitonic behavior is challenging to observe, being obscured by crystalline lattice effects. Here we use polarization-resolved Raman spectroscopy to reveal the quadrupolar excitonic mode in the candidate zero-gap semiconductor Ta2NiSe5disentangling it from the lattice phonons. The excitonic mode pronouncedly softens close to the phase transition, showing its electronic character, while its coupling to noncritical lattice modes is shown to enhance the transition temperature. On cooling, we observe the gradual emergence of coherent superpositions of band states at the correlated insulator gap edge, with strong departures from mean-field theory predictions. Our results demonstrate the realization of a strongly correlated excitonic state in an equilibrium bulk material.more » « less
-
Abstract We investigated the doping and temperature evolutions of the optical response of Sr3(Ir1−xMnx)2O7single crystals with 0 ≤ x ≤ 0.36 by utilizing infrared spectroscopy. Substitution of 3dtransition metal Mn ions into Sr3Ir2O7is expected to induce an insulator-to-metal transition via the decrease in the magnitude of the spin–orbit coupling and the hole doping. In sharp contrast, our data reveal the resilience of the spin–orbit coupling and the incoherent character of the charge transport. Upon Mn substitution, an incoherent in-gap excitation at about 0.25 eV appeared with the decrease in the strength of the optical transitions between the effective total angular momentumJeffbands of the Ir ions. The resonance energies of the optical transitions between theJeffbands which are directly proportional to the magnitude of the spin–orbit coupling hardly varied. In addition to these evolutions of the low-energy response, Mn substitution led to the emergence of a distinct high-energy optical excitation at about 1.2 eV which is larger than the resonance energies of the optical transitions between theJeffbands. This observation indicates that the Mn 3dstates are located away from the Ir 5dstates in energy and that the large difference in the on-site energies of the transition metal ions is responsible for the incoherent charge transport and the robustness of the spin–orbit coupling. The effect of Mn substitution was also registered in the temperature dependence of the electronic response. The anomaly in the optical response of the parent compound observed at the antiferromagnetic transition temperature is notably suppressed in the Mn-doped compounds despite the persistence of the long-range antiferromagnetic ordering. The suppression of the spin-charge coupling could be related to charge disproportionation of the Ir ions.more » « less
-
Abstract An unidentified quantum fluid designated the pseudogap (PG) phase is produced by electron-density depletion in the CuO 2 antiferromagnetic insulator. Current theories suggest that the PG phase may be a pair density wave (PDW) state characterized by a spatially modulating density of electron pairs. Such a state should exhibit a periodically modulating energy gap $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) in real-space, and a characteristic quasiparticle scattering interference (QPI) signature $${\Lambda }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{q}}}}}})$$ Λ P ( q ) in wavevector space. By studying strongly underdoped Bi 2 Sr 2 CaDyCu 2 O 8 at hole-density ~0.08 in the superconductive phase, we detect the 8 a 0 -periodic $${\Delta }_{{{{{{\rm{P}}}}}}}({{{{{\boldsymbol{r}}}}}})$$ Δ P ( r ) modulations signifying a PDW coexisting with superconductivity. Then, by visualizing the temperature dependence of this electronic structure from the superconducting into the pseudogap phase, we find the evolution of the scattering interference signature $$\Lambda ({{{{{\boldsymbol{q}}}}}})$$ Λ ( q ) that is predicted specifically for the temperature dependence of an 8 a 0 -periodic PDW. These observations are consistent with theory for the transition from a PDW state coexisting with d -wave superconductivity to a pure PDW state in the Bi 2 Sr 2 CaDyCu 2 O 8 pseudogap phase.more » « less
-
Abstract Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1D chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.more » « less