skip to main content


Title: Drivers of Variability in the Position of the Subtropical Jet Over Nepal in the Last Millennium Ensemble
Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal.  more » « less
Award ID(s):
2102864
NSF-PAR ID:
10400271
Author(s) / Creator(s):
Date Published:
Journal Name:
Transactions American Geophysical Union
ISSN:
0002-8606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal. 
    more » « less
  2. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  3. Abstract Based on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP-) El Niño and eastern Pacific (EP-) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September to November). The tropical heat sources associated with EP-El Niño and the co-occurred positive phase of Indian Ocean Dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross-Amundsen-Bellingshausen Seas. Anomalous northerly (southerly) wind west (east) of the anomalous anticyclone favor poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advected warmer and wetter (colder and drier) air into the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP-El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross-Amundsen Seas, 20° west of that caused by EP-El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP-El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP-El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes. 
    more » « less
  4. The long-term trend of sea surface salinity (SSS) reveals an intensification of the global hydrological cycle due to human-induced climate change. This study demonstrates that SSS variability can also be used as a measure of terrestrial precipitation on inter-seasonal to inter-annual time scales, and to locate the source of moisture. Seasonal composites during El Niño Southern Oscillation/Indian Ocean Dipole (ENSO/IOD) events are used to understand the variations of moisture transport and precipitation over Australia, and their association with SSS variability. As ENSO/IOD events evolve, patterns of positive or negative SSS anomaly emerge in the Indo-Pacific warm pool region and are accompanied by atmospheric moisture transport anomalies towards Australia. During co-occurring La Niña and negative-IOD events, salty anomalies around the maritime continent (north of Australia) indicate freshwater export and are associated with a significant moisture transport that converges over Australia to create anomalous wet conditions. In contrast, during co-occurring El Niño and positive IOD events, there is the moisture transport divergence anomaly over Australia and results in anomalous dry conditions. The relationship between SSS and atmospheric moisture transport also holds for pure ENSO/IOD events but varies in magnitude and spatial pattern. The significant pattern correlation between the moisture flux divergence and SSS anomaly during the ENSO/IOD events highlights the associated ocean-atmosphere coupling. A case study of the extreme hydroclimatic events of Australia (e.g. 2010-11 Brisbane flood) demonstrates that the changes in SSS occur before the peak of ENSO/IOD events. This raises the prospect that tracking of SSS variability could aid the prediction of Australian rainfall. 
    more » « less
  5. The Indian Summer Monsoon [ISM] provides approximately 80% of South Asia’s annual average precipitation. Nepal represents a particularly important sector of the ISM because of its location at the base of the Himalayas, Asia’s water tower, and in the zone of influence of the mid-latitude westerlies. Late Holocene ISM variability has previously been examined using high resolution resolved stable isotope records of stalagmites from northern, northeastern, and central India, but as of yet, no such records have been published from Nepal. We present high resolution stable isotopic time series from two precisely-dated and partially overlapping stalagmites spanning the last 2400 years from Siddha Baba Cave, central Nepal, as well as a year of isotopic data from rainwater collected near the cave. It has been suggested that the amount effect has only a minor effect on the oxygen isotope variability in precipitation in this area. As a result, we couple oxygen and carbon isotopes from these stalagmites to examine both regional and local-scale ISM dynamics. The Siddha Baba record reveals two periods suggestive of changes in the ISM: an apparent increase in rainfall during approximately CE 1350-1550 and a reduction in rainfall characterizing the last two centuries. We investigate these intervals using the Last Millennium Ensemble, a state-of-the-art suite of climate model simulations conducted by the National Center for Atmospheric Research with the Community Earth System Model. A primary focus is on links between Indo-Pacific ocean-atmosphere interactions and subsequent changes in the monsoon circulation over the Indian subcontinent, as well as regional moisture transport into Nepal between these periods. 
    more » « less