skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Crystallization‐driven Nanoparticle Crystalsomes
Abstract

Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom‐up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co‐crystallization of lipoic acid‐end‐functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self‐seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self‐seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.

 
more » « less
Award ID(s):
2104968
NSF-PAR ID:
10400357
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
15
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanoparticle (NP) assembly has been extensively studied, and a library of NP superstructures has been synthesized. These intricate structures show unique collective optical, electronic, and magnetic properties. In this work, we report a bottom‐up approach for fabricating spherical gold nanoparticle (AuNP) assemblies that mimic colloidosomes. Co‐crystallization of lipoic acid‐end‐functionalized poly(ethylene oxide) (PEO) and AuNPs in solution via a self‐seeding method led to the formation of hollow spherical NP assemblies named nanoparticle crystalsomes (NPCs). Due to the spherical shape, the translational symmetry of PEO crystals is broken in NPCs, which can be attributed to the competition between NP close packing and polymer crystallization. This was confirmed by tuning the NPC morphology via varying the self‐seeding temperature, crystallization temperature, and PEO molecular weight. We envisage that this strategy paves the way to attaining exquisite morphological control of NP assemblies with broken translational symmetry.

     
    more » « less
  2. Abstract

    Polymer crystalsomes are a class of hollow crystalline polymer nanoparticles with shells formed by single crystals with broken translational symmetry. They have shown intriguing mechanical, thermal, and biomedical properties associated with spherical packing. Previously reported crystalsomes are formed by quasi‐2D lamellae which can readily tile on a spherical surface. In this work, the formation of polymer crystalsomes formed by 1D polymer crystals is reported. Poly (3‐hexylthiophene) (P3HT) is chosen as the model polymer because of its 1D growth habit. P3HT crystalsomes are successfully fabricated using a miniemulsion solution crystallization method, as confirmed by scanning electron microscopy and transmission electron microscopy. X‐ray diffraction (XRD) and selected area electron diffraction experiments confirm that P3HT crystallized into a Form I crystal structure. XRD, differential scanning calorimetry and UV–Vis results reveal curvature‐dependent structural, thermal and electro‐optical properties.

     
    more » « less
  3. Abstract

    Spherical crystals are ubiquitous in nature and the necessary breaks in translational symmetry not seen in flat crystals render them structurally unique. Polymer crystals have been shown to exhibit nonflat morphologies, but control over their formation is difficult to achieve. One strategy is directing the crystallization by spatially and/or temporally tuning chain segmental mobility. This has been studied early on using polymer blends or polymer/solvent systems where coupling liquid–liquid phase separation with crystallization could provide morphological control. In this Trend article, a recent trend in using miniemulsion systems to act as nanoscale confinement on chain segmental mobility is reviewed. The confinement at this length scale causes unique features to arise in ordering processes such as liquid–liquid phase separation and crystallization that are not observed at the macroscale. The generality of this approach makes it a good candidate to direct the formation of new and unique hierarchical polymer nanostructures that could be utilized in numerous applications.

     
    more » « less
  4. Abstract

    Synthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.

     
    more » « less
  5. Abstract

    The in‐plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water–oil interface is investigated in situ by UV–vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine‐functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non‐plasmonic (PS/SiO2) NPs. As the PS/SiO2content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmaxchanges within the first few minutes of adsorption due to weak attractive inter‐NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non‐plasmonic NP content. Grazing incidence small angle X‐ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non‐plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase‐separated NP films.

     
    more » « less