Stereotypes about men being better than women at mathematics appear to influence female students’ interest and performance in mathematics. Given the potential motivational benefits of digital learning games, it is possible that games could help to reduce math anxiety, increase self-efficacy, and lead to better learning outcomes for female students. We are exploring this possibility in our work with Decimal Point, a digital learning game that scaffolds practice with decimal operations for 5th and 6th grade students. In several studies with various versions of the game, involving over 800 students across multiple years, we have consistently uncovered a learning advantage for female students with the game. In our most recent investigation of this gender effect, we decided to experiment with a central feature of the game: its use of prompted self-explanation to support student learning. Prior research has suggested that female students might benefit more from self-explanation than male students. In the new study, involving 214 middle school students, we compared three versions of self-explanation in the game – menu-based, scaffolded, and focused – each presenting students with a different type of prompted self-explanation after they solved problems in the game. We found that the focused approach led to more learning across all students than the menu-based approach, a result reported in an earlier paper. In the additional results reported in this paper, we again uncovered the gender effect – female students learned more from the game than male students, regardless of the version of self-explanation – and also found a trend in which female students made fewer self-explanation errors, suggesting they may have been more deliberate and thoughtful in their self-explanations. This self-explanation finding is a possible key to further investigation into how and why we see the gender effect in Decimal Point.
more »
« less
Focused self-explanations lead to the best learning outcomes in a digital learning game
Prompted self-explanation, in which learners are induced to explain how they have
solved problems, is a powerful instructional technique. Self-explanation can be prompted
within learning technology by asking learners to construct their own self-explanations or select explanations from a menu. The menu-based approach has led to the best learning outcomes in the relatively few cases it has been studied in the context of digital learning games, contrary to some self-explanation theory. In a classroom study of 214 5th and 6th graders, in which the students played a digital learning game, we compared three forms of prompted self-explanation: menu-based, scaffolded, and focused (i.e., open-ended text entry, but with a focused prompt). Students in the focused condition learned more than students in the menu-based condition at delayed posttest, with no other learning differences between the conditions. This suggests that focused self-explanations may be especially beneficial for retention and deeper knowledge.
more »
« less
- Award ID(s):
- 1661153
- PAR ID:
- 10400363
- Date Published:
- Journal Name:
- Proceedings of the 16th International Conference on Learning Science (ICLS 2022)
- Page Range / eLocation ID:
- 1229-1232
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains.more » « less
-
This paper presents a comparison of two instructional strategies meant to help learners better comprehend code and learn programming concepts: reading code examples annotated with expert explanation (worked-out examples) versus scaffolded self-explanation of code examples using an automated system (Intelligent Tutoring System). A randomized controlled trial study was conducted with 90 university students who were assigned to either the control group (reading worked-out examples, a passive strategy) or the experimental group where participants were asked to self-explain and received help, if needed, in the form of questions from the tutoring system( scaffolded self-explanation, an interactive strategy). We found that students with low prior knowledge in the experimental condition had significantly higher learning gains than students with high prior knowledge. However, in the control condition, this distinction in learning outcomes based on prior knowledge was not observed. We also analyzed the effect of self-efficacy on learning gains and the nature of self-explanation. Low self-efficacy students learn almost twice as much in the interactive condition versus the passive condition although the difference was not significant probably because of low sample size. We also found that high self-efficacy students tend to provide more relational explanations whereas low self-efficacy students provide more multi-structural or line-by-line explanations.more » « less
-
Confrustion, a mix of confusion and frustration sometimes experienced while grappling with instructional materials, is not necessarily detrimental to learning. Prior research has shown that studying erroneous examples can increase students’ experiences of confrustion, while at the same time helping them learn and overcome their misconceptions. In the study reported in this paper, we examined students’ knowledge and misconceptions about decimal numbers before and after they interacted with an intelligent tutoring system presenting either erroneous examples targeting misconceptions (erroneous example condition) or practice problems targeting the same misconceptions (problem-solving condition). While students in both conditions significantly improved their performance from pretest to posttest, students in the problem-solving condition improved significantly more and experienced significantly less confrustion. When controlling for confrustion levels, there were no differences in performance. This study is interesting in that, unlike prior studies, the higher confrustion that resulted from studying erroneous examples was not associated with better learning outcomes; instead, it was associated with poorer learning. We propose several possible explanations for this different outcome and hypothesize that revisions to the explanation prompts to make them more expert-like may have also made them – and the erroneous examples that they targeted – less understandable and less effective. Whether prompted self-explanation options should be modeled after the shorter, less precise language students tend to use or the longer, more precise language of experts is an open question, and an important one both for understanding the mechanisms of self-explanation and for designing self-explanation options deployed in instructional materials.more » « less
-
Confrustion, a mix of confusion and frustration sometimes experienced while grappling with instructional materials, is not necessarily detrimental to learning. Prior research has shown that studying erroneous examples can increase students’ experiences of confrustion, while at the same time helping them learn and overcome their misconceptions. In the study reported in this paper, we examined students’ knowledge and misconceptions about decimal numbers before and after they interacted with an intelligent tutoring system presenting either erroneous examples targeting misconceptions (erroneous example condition) or practice problems targeting the same misconceptions (problem-solving condition). While students in both conditions significantly improved their performance from pretest to posttest, students in the problem-solving condition improved significantly more and experienced significantly less confrustion. When controlling for confrustion levels, there were no differences in performance. This study is interesting in that, unlike prior studies, the higher confrustion that resulted from studying erroneous examples was not associated with better learning outcomes; instead, it was associated with poorer learning. We propose several possible explanations for this different outcome and hypothesize that revisions to the explanation prompts to make them more expert-like may have also made them – and the erroneous examples that they targeted – less understandable and less effective. Whether prompted self-explanation options should be modeled after the shorter, less precise language students tend to use or the longer, more precise language of experts is an open question, and an important one both for understanding the mechanisms of self-explanation and for designing self-explanation options deployed in instructional materials.more » « less