skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gravity Anomalies and Implications for Shallow Mantle Processes of the Western Cocos‐Nazca Spreading Center
Abstract This study analyzes up‐to‐date gravity data in the Galapagos triple junction region to understand crustal structure and melt distribution beneath the propagating Cocos‐Nazca spreading center (CNSC). Application of a standard thermal model to the mantle Bouguer gravity anomaly (MBA) does not appear to result in a realistic crustal thickness in this region. The cross‐CNSC MBA profiles flatten and axial values increase from east toward the western end of the CNSC. A simple smoothing filter applied to the standard thermal model with different filter widths can explain the progressive flattening of the MBA and is interpreted as different distribution widths (concentrations) of partial melt in the mantle. The east‐west residual MBA gradient along the CNSC is similar to the east flank of the East Pacific Rise (EPR), suggesting that the along‐CNSC gradient could partly reflect the shallow mantle properties associated with the EPR.  more » « less
Award ID(s):
2128781
PAR ID:
10400530
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We invertPg,PmP, andPntraveltimes from an active‐source, multiscale tomography experiment to constrain the three‐dimensional isotropic and anisotropicPwave velocity structure of the topmost oceanic mantle and crust and crustal thickness variations beneath the entire Endeavour segment of the Juan de Fuca Ridge. The isotropic velocity structure is characterized by a semicontinuous, narrow (5‐km‐wide) crustal low‐velocity volume that tracks the sinuous ridge axis. Across the Moho, the low‐velocity volume abruptly broadens to approximately 20 km in width and displays a north‐south linear trend that connects the two overlapping spreading centers bounding the segment. From the seismic results, we estimate the thermal structure and melt distribution beneath the Endeavour segment. The thermal structure indicates that the observed skew, or lateral offset, between the crustal and mantle magmatic systems is a consequence of differences in mechanisms of heat transfer at crustal and mantle depths, with the crust and mantle dominated by advection and conduction, respectively. Melt volume estimates exhibit significant along‐axis variations that coincide with the observed skew between the mantle and crustal magmatic systems, with sites of enhanced crustal melt volumes and vigorous hydrothermal activity corresponding to regions where the mantle and crustal magmatic systems are vertically aligned. These results contradict models of ridge segmentation that predict enhanced and reduced melt supply beneath the segment center and ends, respectively. Our results instead support a model in which segment‐scale skew between the crustal and mantle magmatic systems governs magmatic and hydrothermal processes at mid‐ocean ridges. 
    more » « less
  2. Abstract The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism. 
    more » « less
  3. Abstract Marine multichannel and wide‐angle seismic data constrain the distribution of seamounts, sediment cover sequence and crustal structure along a 460 km margin‐parallel transect of the Hikurangi Plateau. Seismic reflection data reveals five seamount up‐to 4.5 km high and 35–75 km wide, with heterogeneous internal velocity structure. Sediment cover decreases south‐to‐north from ∼4.5 km to ∼1–2 km. The Hikurangi Plateau crust (VP5.5–7.5 km/s) is 11 ± 1 km thick in the south, but thins by 3–4 km further north (∼7–8 km). Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the thickness of subducting crust may contribute to differences in megathrust geometry, upper‐plate stress state and high‐rates of contraction and uplift along the southern Hikurangi margin. 
    more » « less
  4. Dixon, Jackie (Ed.)
    Abstract The upper mantle under the Afar Depression in the East African Rift displays some of the slowest seismic wave speeds observed globally. Despite the extreme nature of the geophysical anomaly, lavas that erupted along the East African Rift record modest thermal anomalies. We present measurements of major elements, H2O, S, and CO2, and Fe3+/ΣFe and S6+/ΣS in submarine glasses from the Gulf of Aden seafloor spreading center and olivine‐, plagioclase‐, and pyroxene‐hosted melt inclusions from Erta Ale volcano in the Afar Depression. We combine these measurements with literature data to place constraints on the temperature, H2O, andfO2of the mantle sources of these lavas as well as the initial and final pressures of melting. The Afar mantle plume is C/FOZO/PHEM in isotopic composition, and we suggest that this mantle component is damp, with 852 ± 167 ppm H2O, not elevated infO2compared to the depleted MORB mantle, and has temperatures of ∼1401–1458°C. This is similar infO2and H2O to the estimates of C/FOZO/PHEM in other locations. Using the moderate H2O contents of the mantle together with the moderate thermal anomaly, we find that melting begins at around 93 km depth and ceases at around 63 km depth under the Afar Depression and at around 37 km depth under the Gulf of Aden, and that ∼1%–29% partial melts of the mantle can be generated under these conditions. We speculate that the presence of melt, and not elevated temperatures or high H2O contents, are the cause for the prominent geophysical anomaly observed in this region. 
    more » « less
  5. Lithospheric weakening mechanisms in non-volcanic segments of active continental rifts remain poorly understood, raising important questions about the geodynamic processes that drive magma-poor rifting. Here, we investigate the crustal and uppermost mantle structure beneath the non-volcanic Albertine-Rhino Graben (ARG) and the adjoining volcanic Edward-George Rift (EGR), East Africa. The ARG exhibits anomalous focusing of intra-rift faulting typically associated with magma-rich, early-stage rifts. Through field observations of rift structures, combined with 3D inversions and 2D forward modeling of gravity data, we investigate the potential controls on intra-rift tectonic strain in a setting with little to no magmatism. Field ground-truthing in the southern ARG reveals prominent rift-axial basement-rooted faulting that post-dates the establishment of border faults. Gravity inversion results show low-density anomalies extending from the surface to about 50 km depth beneath both the EGR and southern ARG, with the strongest anomalies under the ARG at around 15 km. 2D gravity modeling suggests that the lower crust and uppermost mantle are both thinned and less dense beneath these rift segments. In the EGR, crustal thinning and low-density anomalies align with low P-wave velocity zones, suggesting the presence of melt. Given the similar degree of crustal thinning and de-densification in the southern ARG, we infer that trapped lower-crustal melts may also exist beneath the rift, potentially contributing to the early focusing of intra-rift strain. We propose that in non-volcanic rifts, deep, unexposed (‘blind’) melts may play a key role in mechanical weakening of the lithosphere, enabling continued tectonic extension even in the absence of significant surface volcanism. 
    more » « less