skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: THE TAPHONOMIC CHARACTER, OCCURRENCE, AND PERSISTENCE OF UPPER PERMIAN–LOWER TRIASSIC PLANT ASSEMBLAGES IN THE MID-PALEOLATITUDES, BOGDA MOUNTAINS, WESTERN CHINA
ABSTRACT The Bogda Mountains, Xianjiang Uygur Autonomous Region, western China, expose an uppermost Permian–Lower Triassic succession of fully continental strata deposited across three graben (half graben) structures in the mid-paleolatitudes of Pangea. A cyclostratigraphy scheme developed for the succession is subdivided into three low-order cycles (Wutonggou, Jiucaiyuan, Shaofanggou). Low-order cycles are partitioned into 1838 high-order cycles based on repetitive environmental changes, and their plant taphonomic character is assessed in > 4700 m of high-resolution, measured sections distributed across ∼ 100 km. Four taphonomic assemblages are represented by: permineralized wood (both autochthonous and allochthonous), megafloral adpressions (?parautochthonous and allochthonous) identifiable to systematic affinity, unidentifiable (allochthonous) phytoclasts concentrated or disseminated on bedding, and (autochthonous) rooting structures of various configurations (carbon films to rhizoconcretions). Their temporal and spatial occurrences vary across the study area and are dependent on the array of depositional environments exposed in any particular locality. Similar to paleobotanical results in other fully continental basins, megafloral elements are rarely encountered. Both wood (erect permineralized stumps and prostrate logs) and adpressions are found in < 2% of meandering river and limnic cycles, where sediment accumulated under semi-arid to humid conditions. The absence of such assemblages in river-and-lake deposits is more likely related to physical or geographical factors than it is to an absence of organic-matter contribution. With such a low frequency, no predictable pattern or trend to their occurrence can be determined. This is also true for any horizon in which rooting structures are preserved, although paleosols occur in all or parts of high-order cycles developed under arid to humid conditions. Physical rooting structures are encountered in only 23% of these and are not preserved equally across space and time. Allochthonous phytoclasts are the most common taphonomic assemblage, preserved in association with micaceous minerals on bedding in fine-grained lithofacies. The consistency of phytoclast assemblages throughout the succession is empirical evidence for the presence of riparian vegetation during a time when models propose the catastrophic demise of land plants, and does not support an interpretation of vegetational demise followed by long-term recovery across the crisis interval in this basin. These mesofossil and microfossil (palynological) assemblages offer the best opportunity to understand the effects of the crisis on the base of terrestrial ecosystems.  more » « less
Award ID(s):
1714759
PAR ID:
10400537
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PALAIOS
Volume:
38
Issue:
1
ISSN:
0883-1351
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT To accurately predict earth system response to global change, we must be able to predict the responses of important properties of that system, such as the depths over which plant roots are distributed. In 2008, H. J. Schenk proposed a model for the depth distribution of plant roots based on a simple hydrological scheme and the assumptions that plants will take up the shallowest water available first and will distribute their roots in proportion to long‐term mean uptake at each depth. Here, we derive an analytical solution to the Schenk model under an idealised climate (in which infiltration events are treated as a marked Poisson process), explore properties of the result and compare with data. The solution suggests that in very humid and arid climates, the soil wetting and drying cycles induced by root water uptake are generally confined to a characteristic depth below the surface. This depth depends on the typical magnitude of rainfall events (most strongly so in arid climates), the typical total transpiration demand between rainfall events (most strongly in humid climates) and the plant‐available water holding capacity of the soil. Root water uptake (and thus predicted root density) in very humid and arid landscapes decreases exponentially with depth at a rate determined by this characteristic depth. However, in a mesic climate, soils may be wet or dry to greater depths below the near‐surface, and the duration spent in each state increases with depth. Consequently, root water uptake and root density in mesic climates more closely resemble a power law distribution. When the aridity index is exactly 1, the characteristic depth diverges and the mean rooting depth approaches infinity. This suggests that the most skewed root depth distributions might occur in mesic environments. We compared this model to another analytical solution and a compiled database of root distributions (159 combined locations). For a larger comparison dataset, we also compared 99th percentile rooting depth to rooting depths modeled by two other frameworks and a database of observed rooting depths (1271 combined locations). Results demonstrate that the analytical formulation of the Schenk model performs well as a shallow bound on rooting depths and captures something of the nonexponential form of root distributions, and its error is similar to or less than that of other modeling frameworks. Errors may be partly explained by the deviation of real climate from the idealisations used to obtain an analytical solution (exponentially distributed infiltration events and no seasonality). 
    more » « less
  2. Resource quantity (i.e. organic matter; OM) is a main driver of the prevailing energy pathway in freshwater food webs. The OM pool is mainly composed of allochthonous material, a primary resource for freshwater consumers. Contrastingly, small amounts of autochthonous OM (i.e. algae) can subsidize aquatic communities due to its higher nutritional quality. To date, there is no consensus about the relative importance of allochthonous and autochthonous OM for freshwater food webs or the environmental factors driving their relative importance. We fill this gap by evaluating the relative importance of allochthonous and autochthonous OM sources for freshwater food webs on a global scale through a meta‐analytical approach. We gathered the outcome of stable isotope mixing models of 2789 cases from 58 published studies and calculated a response ratio between the mean contributions of allochthonous and autochthonous OM for freshwater consumers. Using mixed‐effect models and a multimodel inference approach, we tested the influence of latitude, habitat type, ecosystem size, climate and terrestrial productivity over the response ratio. The relative contribution of autochthonous OM was higher in lotic systems. In lentic systems, increasing terrestrial productivity increased the relative contribution of autochthonous OM, while increasing precipitation and temperature seasonality reduced this relative contribution. We suggested that factors increasing terrestrial productivity might also boost autochthonous OM in these systems, while precipitation increases the transport of allochthonous OM to freshwater habitats. We did not find any relationship between environmental factors and the relative contribution of autochthonous OM for lotic systems. We concluded that the relative contribution of allochthonous and autochthonous energy sources to freshwater food webs differs between lotic and lentic ecosystems and it is dependent on multiple environmental factors. 
    more » « less
  3. Abstract Marine isopod fossils represent a small component of the crustacean fossil record, contrasting the exceptional modern diversity of marine representatives of Isopoda. Examination of previously documented isopod species therefore presents an opportunity to derive additional paleobiological and taphonomic insight of these rare fossils. Here we consider two clusters ofArchaeoniscus brodieifrom the Lower Cretaceous (middle to upper Berriasian) Intermarine Member of the Durlston Formation, England. The individuals within the clusters are mostly complete, of similar size ranges, and are preserved on two different bedding planes. After examining these individuals, we illustrate, for the first time, appendages and eyes ofA. brodiei. The appendage morphology supports the interpretation ofA. brodieias an isopod adapted to a benthic lifestyle. We propose that isopods from the Durlston Formation follow similar taphonomic pathways to arthropods preserved within plattenkalk-like deposits, resulting in enrichment in calcium carbonate and phosphate. Finally, the clusters reflect gregarious activities that were preserved during hypoxic events brought on by concurrent decay of algal blooms. 
    more » « less
  4. Abstract Due to widespread manipulation of nitrogen (N), much research has focused on processes controlling the fate of anthropogenic N in streams. Yet, in a variety of oligotrophic systems, N fixed by periphyton is a significant driver of ecosystem metabolism. Due to difficulties partitioning allochthonous and autochthonous sources, there is limited information regarding how the latter is processed. Autochthonous N may be particularly important in alpine, arid, or polar environments. We test the hypothesis that the availability of remineralized autochthonous N is controlled by connectivity between the hyporheic zone and main channel due to the contrasting biogeochemical functions of benthic autotrophs (including N‐fixingNostoc) and hyporheic heterotrophs in an intermittent Antarctic stream. There, we collected surface water and hyporheic water concurrently at 4–6 h intervals over a 32.5 h period during one flow season and opportunistically throughout a second. Hyporheic water had 7 to 30 times greater nitrate‐N concentrations relative to surface water across all flow conditions. In contrast, ammonium concentrations were generally lower, although similar among locations. Additionally, nitrate in hyporheic water was positively correlated with silica, an indicator of hyporheic residence time. A laboratory assay confirmed prior inferences that hyporheic microbial communities possess the functional potential to perform nitrification. Together, these findings suggest that remineralized autochthonous N accumulates in the hyporheic zone even as streamflow varies and likely subsidizes stream N availability, which supports prior inferences from N stable isotope data at this site. These results highlight the importance of hyporheic connectivity in controlling autochthonous N cycling and availability in streams. 
    more » « less
  5. Abstract Moderately diverse trace fossil assemblages occur in the Eocene Tambak Member of the Tanjung Formation, in the Asem Asem Basin on the southern coast of South Kalimantan. These assemblages are fundamental for establishing depositional models and paleoecological reconstructions for southern Kalimantan during the Eocene and contribute substantially to the otherwise poorly documented fossil record of birds in Island Southeast Asia. Extensive forest cover has precluded previous ichnological analyses in the study area. The traces discussed herein were discovered in newly exposed outcrops in the basal part of the Wahana Baratama coal mine, on the Kalimantan coast of the Java Sea. The Tambak assemblage includes both vertebrate and invertebrate trace fossils. Invertebrate traces observed in this study include Arenicolites, Cylindrichnus, Diplocraterion, Palaeophycus, Planolites, Psilonichnus, Siphonichnus, Skolithos, Thalassinoides, Taenidium, and Trichichnus. Vertebrate-derived trace fossils include nine avian footprint ichnogenera (Aquatilavipes, Archaeornithipus, Ardeipeda, Aviadactyla, cf. Avipeda, cf. Fuscinapeda, cf. Ludicharadripodiscus, and two unnamed forms). A variety of shallow, circular to cylindrical pits and horizontal, singular to paired horizontal grooves preserved in concave epirelief are interpreted as avian feeding and foraging traces. These traces likely represent the activities of small to medium-sized shorebirds and waterbirds like those of living sandpipers, plovers, cranes, egrets, and herons. The pits and grooves are interpreted as foraging traces and occur interspersed with both avian trackways and invertebrate traces. The trace fossils occur preferentially in heterolithic successions with lenticular to flaser bedding, herringbone ripple stratification, and common reactivation surfaces, indicating that the study interval was deposited in a tidally influenced setting. Avian trackways, desiccation cracks, and common rooting indicate that the succession was prone to both subaqueous inundation and periodic subaerial exposure. We infer that the Tambak mixed vertebrate-invertebrate trace fossil association occurred on channel-margin intertidal flats in a tide-influenced estuarine setting. The occurrence of a moderately diverse avian footprint and foraging trace assemblage in the Tambak Member of the Tanjung Formation illustrates that shorebirds and waterbirds have been using wetlands in what is now Kalimantan for their food resources since at least the late Eocene. 
    more » « less