Resource quantity (i.e. organic matter; OM) is a main driver of the prevailing energy pathway in freshwater food webs. The OM pool is mainly composed of allochthonous material, a primary resource for freshwater consumers. Contrastingly, small amounts of autochthonous OM (i.e. algae) can subsidize aquatic communities due to its higher nutritional quality. To date, there is no consensus about the relative importance of allochthonous and autochthonous OM for freshwater food webs or the environmental factors driving their relative importance. We fill this gap by evaluating the relative importance of allochthonous and autochthonous OM sources for freshwater food webs on a global scale through a meta‐analytical approach. We gathered the outcome of stable isotope mixing models of 2789 cases from 58 published studies and calculated a response ratio between the mean contributions of allochthonous and autochthonous OM for freshwater consumers. Using mixed‐effect models and a multimodel inference approach, we tested the influence of latitude, habitat type, ecosystem size, climate and terrestrial productivity over the response ratio. The relative contribution of autochthonous OM was higher in lotic systems. In lentic systems, increasing terrestrial productivity increased the relative contribution of autochthonous OM, while increasing precipitation and temperature seasonality reduced this relative contribution. We suggested that factors increasing terrestrial productivity might also boost autochthonous OM in these systems, while precipitation increases the transport of allochthonous OM to freshwater habitats. We did not find any relationship between environmental factors and the relative contribution of autochthonous OM for lotic systems. We concluded that the relative contribution of allochthonous and autochthonous energy sources to freshwater food webs differs between lotic and lentic ecosystems and it is dependent on multiple environmental factors.
- Award ID(s):
- 1714759
- NSF-PAR ID:
- 10400537
- Date Published:
- Journal Name:
- PALAIOS
- Volume:
- 38
- Issue:
- 1
- ISSN:
- 0883-1351
- Page Range / eLocation ID:
- 1 to 21
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Due to widespread manipulation of nitrogen (N), much research has focused on processes controlling the fate of anthropogenic N in streams. Yet, in a variety of oligotrophic systems, N fixed by periphyton is a significant driver of ecosystem metabolism. Due to difficulties partitioning allochthonous and autochthonous sources, there is limited information regarding how the latter is processed. Autochthonous N may be particularly important in alpine, arid, or polar environments. We test the hypothesis that the availability of remineralized autochthonous N is controlled by connectivity between the hyporheic zone and main channel due to the contrasting biogeochemical functions of benthic autotrophs (including N‐fixing
Nostoc ) and hyporheic heterotrophs in an intermittent Antarctic stream. There, we collected surface water and hyporheic water concurrently at 4–6 h intervals over a 32.5 h period during one flow season and opportunistically throughout a second. Hyporheic water had 7 to 30 times greater nitrate‐N concentrations relative to surface water across all flow conditions. In contrast, ammonium concentrations were generally lower, although similar among locations. Additionally, nitrate in hyporheic water was positively correlated with silica, an indicator of hyporheic residence time. A laboratory assay confirmed prior inferences that hyporheic microbial communities possess the functional potential to perform nitrification. Together, these findings suggest that remineralized autochthonous N accumulates in the hyporheic zone even as streamflow varies and likely subsidizes stream N availability, which supports prior inferences from N stable isotope data at this site. These results highlight the importance of hyporheic connectivity in controlling autochthonous N cycling and availability in streams. -
Abstract Warming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA. We found that both prokaryotic and eukaryotic communities are structured by temperature, terrestrial (allochthonous) DOC and latitude. Prokaryotic communities are also influenced by total and aquatic (autochthonous) DOC, while eukaryotic communities are also structured by nitrate. Additionally, increasing N availability was associated with reduced richness of prokaryotic communities, and both lower richness and evenness of eukaryotes. We did not detect any synergistic or antagonistic effects as there were no interactions among temperature and resource variables. Together, our results suggest that (a) organic and inorganic resources, temperature, and geographic location (based on latitude and longitude) independently influence lake microbial communities; and (b) increasing N supply due to atmospheric N deposition may reduce richness of both prokaryotic and eukaryotic microbes, probably by reducing niche dimensionality. Our study provides insight into abiotic processes structuring microbial communities across environmental gradients and their potential roles in material and energy fluxes within and between ecosystems.
-
Abstract The end-Permian extinction (EPE) has been considered to be contemporaneous on land and in the oceans. However, re-examined floristic records and new radiometric ages from Gondwana indicate a nuanced terrestrial ecosystem response to EPE global change. Paleosol geochemistry and climate simulations indicate paleoclimate change likely caused the demise of the widespread glossopterid ecosystems in Gondwana. Here, we evaluate the climate response of plants to the EPE via dendrochronology snapshots to produce annual-resolution records of tree-ring growth for a succession of late Permian and early Middle Triassic fossil forests from Antarctica. Paleosol geochemistry indicates a shift in paleoclimate towards more humid conditions in the Early and early Middle Triassic relative to the late Permian. Paleosol morphology, however, supports inferences of a lack of forested ecosystems in the Early Triassic. The plant responses to this paleoclimate change were accompanied by enhanced stress during the latest Permian as determined by high-resolution paleoclimate analysis of wood growth intervals. These results suggest that paleoclimate change during the late Permian exerted significant stress on high-latitude forests, consistent with the hypothesis that climate change was likely the primary driver of the extinction of the glossopterid ecosystems.
-
null (Ed.)The Barstow Formation in the Mojave region of California was deposited in an extensional-basin setting of the Basin and Range province and preserves diverse middle Miocene mammalian assemblages. Six facies associations represent the dominant depositional environments in the basin, which changed through time from alluvial-fan and playa-dominated settings to floodplains and spring-fed wetlands. The majority of fossil localities and specimens occur in later-forming facies associations. We analyzed the taphonomic characteristics of fossil assemblages to test whether basin-scale facies associations or locality-scale facies exert more control on the preservational features of mammalian assemblages through the formation. We documented the facies settings of 47 vertebrate localities in the field in order to interpret depositional setting and the mode of accumulation for fossil assemblages. We evaluated skeletal material in museum collections for taphonomic indicators, including weathering stage, original bone-damage patterns, hydraulic equivalence, and skeletal-element composition. We evaluated four alternative modes of accumulation, including attritional accumulation on the land surface, accumulation by fluvial processes, carnivore or scavenger accumulations, and mass-death events. The majority of localities represent attritional accumulations at sites of long-term mortality in channel-margin, abandoned-channel, poorly drained floodplain, and ephemeral-wetland settings. Skeletal-element composition and taphonomic characteristics varied among facies, indicating an important role for depositional setting and landscape position on fossil-assemblage preservation. We find that locality-scale facies have a greater influence on the taphonomic characteristics of fossil assemblages; the taphonomy of each facies association is influenced by the facies that compose it. The facies composition and distribution within facies associations change through the formation, with a greater variety of depositional settings forming later in the history of the basin. Heterogeneous landscapes present more settings for fossil accumulation, contributing to the increase in fossil occurrence through the depositional history of the formation.more » « less