skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unrecorded Tundra Fires of the Arctic Slope, Alaska USA
Few fires are known to have burned the tundra of the Arctic Slope north of the Brooks Range in Alaska, USA. A total of 90 fires between 1969 and 2022 are known. Because fire has been rare, old burns can be detected by the traces of thermokarst and distinct vegetation they leave in otherwise uniform tundra, which are visible in aerial photograph archives. Several prehistoric tundra burns have been found in this way. Detection of tundra fires in this sparsely populated and remote area has been historically inconsistent and opportunistic, relying on reports by aircraft pilots. Fire reports have been logged into an administrative database which, out of necessity, has been used to scientifically evaluate changes in the fire regime. To improve the consistency of the record, we completed a systematic search of Landsat Collection 2 for the Brooks Range Foothills ecoregion over the period 1972–2022. We found 57 unrecorded tundra burns, about 41% of the total, which now numbers 138. Only 15% and 33% of all fires appear in MODIS and VIIRS satellite-borne thermal anomaly products, respectively. The fire frequency in the first 37 years of the record is 0.89 y−1 for natural ignitions that spread ≥10 ha. Frequency in the last 13 years is 2.5 y−1, indicating a nearly three-fold increase in fire frequency.  more » « less
Award ID(s):
1929170 1757348
PAR ID:
10400571
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Fire
Volume:
6
Issue:
3
ISSN:
2571-6255
Page Range / eLocation ID:
101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In forests adapted to infrequent (> 100-year) stand-replacing fires, novel short-interval (< 30- year) fires burn young forests before they recover from previous burns. Postfire tree regeneration is reduced, plant communities shift, soils are hotter and drier, but effects on biogeochemical cycling are unresolved. We asked how postfire nitrogen (N) stocks, N availability and N fixation varied in lodgepole pine (Pinus contorta var. latifolia) forests burned at long and short intervals in Grand Teton National Park (Wyoming, USA). In 2021 and 2022, we sampled 0.25-ha plots that burned as long-interval (> 130-year) stand-replacing fire in 2000 (n = 3) or 2016 (n = 3) and nearby plots of shortinterval (16-year) fire that burned as stand-replacing fire in both years (n = 6 ‘reburns’). Five years postfire, aboveground N stocks were 31% lower in short- versus long-interval fire (77 vs. 109 kg N ha-1, respectively) and 76% lower than 21-year-old stands that did not reburn (323 kg N ha-1). However, soil total N averaged 1,072 kg N ha-1 and dominated ecosystem N stocks, which averaged 1,235 kg N ha-1 and did not vary among burn categories. Annual resinsorbed nitrate was highest in reburns and positively correlated with understory species richness and biomass. Lupinus argenteus was sparse, and asymbiotic N fixation rates were modest in all plots (< 0.1 kg N ha-1 y-1). Although ecosystem N stocks were unaffected, high-severity short-interval fire reduced and repartitioned aboveground N stocks and increased N availability. These shifts in N pools and fluxes suggest reburns can markedly alter N cycling in subalpine forests. 
    more » « less
  2. Abstract BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. ResultsUsing a spatially extensive dataset of 555 plots from 31 separate fires in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kg C m−2. However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. ConclusionsOur study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes could have profound implications for the boreal C-climate feedback and underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency. 
    more » « less
  3. Background: The increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70-130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (>70 years), intermediate (30 -70 years), and short (<30 years) FRIs, and triple (three fires in <70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate. Results: Using a spatially extensive dataset of 555 plots from 31 separate fire scars in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kilograms Carbon per square meter (kg C m-2). However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure. Conclusions: Our study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes have profound implications for the boreal C-climate feedback and could accelerate climate warming. Our findings underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency. 
    more » « less
  4. Di Luca, Marco (Ed.)
    Recently, tick-borne illnesses have been trending upward and are an increasing source of risk to people’s health in the United States. This is due to range expansion in tick habitats as a result of climate change. Thus, it is imperative to find a practical and cost-efficient way of managing tick populations. Prescribed burns are a common form of land management that can be cost-efficient if properly managed and can be applied across large amounts of land. In this study, we present a compartmental model for ticks carrying Lyme disease and uniquely incorporate the effects of prescribed fire using an impulsive system to investigate the effects of prescribed fire intensity (high and low) and the duration between burns. Our study found that fire intensity has a larger impact in reducing tick population than the frequency between burns. Furthermore, burning at high intensity is preferable to burning at low intensity whenever possible, although high-intensity burns may be unrealistic due to environmental factors. Annual burns resulted in the most significant reduction in infectious nymphs, which are the primary carriers of Lyme disease. 
    more » « less
  5. Abstract Understanding the resilience of tropical forests to fire is essential for evaluating their dynamics under climate change and increasing land-use pressures. Here, we assess how different fire frequencies and intensities influence tree mortality and carbon dynamics in southeastern Amazonia. Using a replicated randomized block design with 24 plots (40 × 40 m), we applied four treatments: unburned control, one burn in 2016 (B1), two burns in 2013 and 2016 (B2), and two burns with added fuel (B2+) to increase fire intensity. Forest inventories conducted from 2012 to 2024 measured tree mortality, diversity, composition, and aboveground biomass. Fire frequency and intensity significantly increased mortality, particularly among small trees, but impacts on forest structure and productivity were more nuanced. Aboveground biomass declined modestly in burned plots, with the greatest loss in B2+ (13%). Aboveground net primary productivity (ANPP) dropped immediately post-burn, especially in B2 and B2+, and partially recovered by 2022–2024. In contrast, leaf area index (LAI) and litterfall rebounded within a couple of years, suggesting a degree of structural and functional resilience. Species richness and composition remained relatively stable in the years following the first experimental fires, but gradually declined and shifted in B2 and B2+ plots beginning in 2014. These results indicate that the experimental forests’ resilience to low-intensity and infrequent fires can prevent widespread forest collapse, but repeated and intensified burns likely undermine long-term resilience by altering forest structure, composition, and carbon dynamics. With the southeastern Amazon forests projected to burn more often in the coming decades, our results highlight both the vulnerability and recovery potential of these ecosystems. Maintaining ecological integrity and minimizing additional disturbances that influence fuel availability will be critical for sustaining forest functions under future fire regimes. 
    more » « less