Title: Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease
Recently, tick-borne illnesses have been trending upward and are an increasing source of risk to people’s health in the United States. This is due to range expansion in tick habitats as a result of climate change. Thus, it is imperative to find a practical and cost-efficient way of managing tick populations. Prescribed burns are a common form of land management that can be cost-efficient if properly managed and can be applied across large amounts of land. In this study, we present a compartmental model for ticks carrying Lyme disease and uniquely incorporate the effects of prescribed fire using an impulsive system to investigate the effects of prescribed fire intensity (high and low) and the duration between burns. Our study found that fire intensity has a larger impact in reducing tick population than the frequency between burns. Furthermore, burning at high intensity is preferable to burning at low intensity whenever possible, although high-intensity burns may be unrealistic due to environmental factors. Annual burns resulted in the most significant reduction in infectious nymphs, which are the primary carriers of Lyme disease. more »« less
Fulk, Alexander; Huang, Weizhang; Agusto, Folashade
(, Computational and Mathematical Methods in Medicine)
Supriatna, Asep Kuswandi
(Ed.)
Lyme disease is one of the most prominent tick-borne diseases in the United States, and prevalence of the disease has been steadily increasing over the past several decades due to a number of factors, including climate change. Methods for control of the disease have been considered, one of which is prescribed burning. In this paper, the effects of prescribed burns on the abundance of ticks present in a spatial domain are assessed. A spatial stage-structured tick-host model with an impulsive differential equation system is developed to simulate the effect that controlled burning has on tick populations. Subsequently, a global sensitivity analysis is performed to evaluate the effect of various model parameters on the prevalence of infectious nymphs. Results indicate that while ticks can recover relatively quickly following a burn, yearly, high-intensity prescribed burns can reduce the prevalence of ticks in and around the area that is burned. The use of prescribed burns in preventing the establishment of ticks into new areas is also explored, and it is observed that frequent burning can slow establishment considerably.
Prescribed burning by Indigenous people was once ubiquitous throughout California. Settler colonialism brought immense investments in fire suppression by the United States Forest Service and the California Department of Forestry and Fire Prevention (CAL FIRE) to protect timber and structures, effectively limiting prescribed burning in California. Despite this, fire-dependent American Indian communities such as the Karuk and Yurok peoples, stalwartly advocate for expanding prescribed burning as a part of their efforts to revitalize their culture and sovereignty. To examine the political ecology of prescribed burning in Northern California, we coupled participant observation of prescribed burning in Karuk and Yurok territories (2015–2019) with 75 surveys and 18 interviews with Indigenous and non-Indigenous fire managers to identify political structures and material conditions that facilitate and constrain prescribed fire expansion. Managers report that interagency partnerships have provided supplemental funding and personnel to enable burning, and that decentralized prescribed burn associations facilitate prescribed fire. However, land dispossession and centralized state regulations undermine Indigenous and local fire governance. Excessive investment in suppression and the underfunding of prescribed fire produces a scarcity of personnel to implement and plan burns. Where Tribes and local communities have established burning infrastructure, authorities should consider the devolution of decision-making and land repatriation to accelerate prescribed fire expansion.
Johnson, Megan_M; Garcia-Menendez, Fernando
(, Environmental Research Letters)
Abstract Although prescribed fire is frequently used in the Southeastern United States, land managers in the region and across the country plan to expand burning to mitigate wildfire and achieve other ecological goals. However, smoke management is often considered a barrier to prescribed fire. Additionally, climate change will likely affect the frequency of acceptable meteorological conditions for prescribed burning, potentially restricting the use of the practice. Here, we examine the air quality impacts from prescribed fire and wildfire in the Southeastern U.S., the populations affected by smoke in the region, and how these impacts may change under climate change. We rely on projections of wildfire burn area and climate-driven shifts in the frequency of meteorological conditions adequate for prescribed burning, as well as a survey of Southeastern land managers investigating their anticipated response to these changes. Based on this information, we use chemical transport modeling to assess the contributions of wildfire and prescribed fire to air pollution, and project how smoke impacts may vary due to climate change and different land manager responses. We find that prescribed fire is responsible for a significant fraction of regional particulate matter pollution. Populations exposed to the most smoke tend to have higher fractions of people of color and low income. Depending on how land managers respond to changes in atmospheric conditions under climate change, prescribed fire smoke may decrease slightly in the areas with the heaviest burning or increase across much of the Southeast. Projections also show that climate-driven changes in wildfire and prescribed burning may impact compliance with recently updated air quality standards. The analysis assesses the potential consequences of climate change on air pollution over a region in which wildland fire is extensively managed, providing insight into land management strategies that call for increased application of prescribed fire.
Novak, Erin N.; Bertelsen, Michelle; Davis, Dick; Grobert, Devin M.; Lyons, Kelly G.; Martina, Jason P.; McCaw, W. Matt; O'Toole, Matthew; Veldman, Joseph W.
(, Ecosphere)
Abstract Fire exclusion and mismanaged grazing are globally important drivers of environmental change in mesic C4grasslands and savannas. Although interest is growing in prescribed fire for grassland restoration, we have little long‐term experimental evidence of the influence of burn season on the recovery of herbaceous plant communities, encroachment by trees and shrubs, and invasion by exotic grasses. We conducted a prescribed fire experiment (seven burns between 2001 and 2019) in historically fire‐excluded and overgrazed grasslands of central Texas. Sites were assigned to one of four experimental treatments: summer burns (warm season, lightning season), fall burns (early cool season), winter burns (late cool season), or unburned (fire exclusion). To assess restoration outcomes of the experiment, in 2019, we identified old‐growth grasslands to serve as reference sites. Herbaceous‐layer plant communities in all experimental sites were compositionally and functionally distinct from old‐growth grasslands, with little recovery of perennial C4grasses and long‐lived forbs. Unburned sites were characterized by several species of tree, shrub, and vine; summer sites were characterized by certain C3grasses and forbs; and fall and winter sites were intermediate in composition to the unburned and summer sites. Despite compositional differences, all treatments had comparable plot‐level plant species richness (range 89–95 species/1000 m2). At the local‐scale, summer sites (23 species/m2) and old‐growth grasslands (20 species/m2) supported greater richness than unburned sites (15 species/m2), but did not differ significantly from fall or winter sites. Among fire treatments, summer and winter burns most consistently produced the vegetation structure of old‐growth grasslands (e.g., mean woody canopy cover of 9%). But whereas winter burns promoted the invasive grassBothriochloa ischaemumby maintaining areas with low canopy cover, summer burns simultaneously limited woody encroachment and controlledB. ischaemuminvasion. Our results support a growing body of literature that shows that prescribed fire alone, without the introduction of plant propagules, cannot necessarily restore old‐growth grassland community composition. Nonetheless, this long‐term experiment demonstrates that prescribed burns implemented in the summer can benefit restoration by preventing woody encroachment while also controlling an invasive grass. We suggest that fire season deserves greater attention in grassland restoration planning and ecological research.
Starns, H. D.; Wonkka, C. L.; Lodge, A. G.; Twidwell, D.; Treadwell, M. L.; Kavanagh, K. L.; Dickinson, M. B.; Tolleson, D. R.; Rogers, W. E.
(, Proceedings of the Albuquerque Fire Behavior and Fuels Conference)
Over the past century, rangelands worldwide have experienced changes in vegetation cover and structure, many transitioning from grass-dominated to shrub-dominated systems (Archer et al. 2017; Fuhlendorf et al. 2017). In North America, such transitions are primarily a consequence of livestock management and fire exclusion practices of Euro-American settlers (Bray 1904; Archer 1989; Fuhlendorf and Smeins 1997). These shrub-dominated systems are often less productive for wildlife and livestock and may have crossed a threshold which cannot be reversed via common restoration practices such as prescribed fire (Ansley and Castellano 2006; Ratajczak et al. 2016). Oftentimes, the inability of prescribed fire to succeed at crossing this threshold is the result of insufficient fuel loading or inadequate fire intensity due to prescription parameters (Havstad and James 2010; Twidwell et al. 2016). However, recent work has demonstrated that burning under more extreme conditions (e.g. higher temperatures, lower fine fuel moisture) can slow or change the course of encroachment (Twidwell et al. 2013; Twidwell et al. 2016). Many encroaching shrub species are capable of persisting after fire via resprouting from protected buds (Bond and Midgley 2001). Such mechanisms pose challenges for land managers, particularly because resprouting often results in a higher number of stems per individual plant. Mesquite (Prosopis spp.) shrubs are well-known for their ability to persist to varying degrees following disturbance due to fire, chemical, and mechanical treatments. Due to historical livestock management and fire suppression practices, honey mesquite (Prosopis glandulosa) has increased in dominance and abundance in the southern Great Plains since the beginning of Euro-American settlement (Bray 1904; Archer 1989). Although prescribed fire has increased in acceptance as a method to reduce encroachment of mesquite, low-intensity fires performed during the dormant season rarely cause mortality (Wright and Bailey 1980; Ansley et al. 1998), especially when they are performed as a single treatment rather than as part of a comprehensive management plan. However, recent studies have demonstrated that more intense fires conducted outside the dormant season are capable of reducing resprouters (including mesquite), particularly during periods of drought (Twidwell et al. 2016). We evaluated impacts of fire intensity and abiotic factors on persistence of honey mesquite, a species of concern for managers in the southern Great Plains.
Guo, Emily, and Agusto, Folashade B. Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease. Retrieved from https://par.nsf.gov/biblio/10402451. Canadian Journal of Infectious Diseases and Medical Microbiology 2022. Web. doi:10.1155/2022/5300887.
Guo, Emily, & Agusto, Folashade B. Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022 (). Retrieved from https://par.nsf.gov/biblio/10402451. https://doi.org/10.1155/2022/5300887
Guo, Emily, and Agusto, Folashade B.
"Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease". Canadian Journal of Infectious Diseases and Medical Microbiology 2022 (). Country unknown/Code not available. https://doi.org/10.1155/2022/5300887.https://par.nsf.gov/biblio/10402451.
@article{osti_10402451,
place = {Country unknown/Code not available},
title = {Baptism of Fire: Modeling the Effects of Prescribed Fire on Lyme Disease},
url = {https://par.nsf.gov/biblio/10402451},
DOI = {10.1155/2022/5300887},
abstractNote = {Recently, tick-borne illnesses have been trending upward and are an increasing source of risk to people’s health in the United States. This is due to range expansion in tick habitats as a result of climate change. Thus, it is imperative to find a practical and cost-efficient way of managing tick populations. Prescribed burns are a common form of land management that can be cost-efficient if properly managed and can be applied across large amounts of land. In this study, we present a compartmental model for ticks carrying Lyme disease and uniquely incorporate the effects of prescribed fire using an impulsive system to investigate the effects of prescribed fire intensity (high and low) and the duration between burns. Our study found that fire intensity has a larger impact in reducing tick population than the frequency between burns. Furthermore, burning at high intensity is preferable to burning at low intensity whenever possible, although high-intensity burns may be unrealistic due to environmental factors. Annual burns resulted in the most significant reduction in infectious nymphs, which are the primary carriers of Lyme disease.},
journal = {Canadian Journal of Infectious Diseases and Medical Microbiology},
volume = {2022},
author = {Guo, Emily and Agusto, Folashade B.},
editor = {Di Luca, Marco}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.