skip to main content


Title: Asthenospheric low-velocity zone consistent with globally prevalent partial melting
The asthenosphere plays a fundamental role in present-day plate tectonics as its low viscosity controls how convection in the mantle below it is expressed at the Earth’s surface above. The origin of the asthenosphere, including the role of partial melting in reducing its viscosity and facilitating deformation, remains unclear. Here we analysed receiver-function data from globally distributed seismic stations to image the lower reaches of the asthenospheric low-seismic-velocity zone. We present globally widespread evidence for a positive seismic-velocity gradient at depths of ~150 km, which represents the base of a particularly low-velocity zone within the asthenosphere. This boundary is most commonly detected in regions with elevated upper-mantle temperatures and is best modelled as the base of a partially molten layer. The presence of the boundary showed no correlation with radial seismic anisotropy, which represents accumulated mantle strain, indicating that the inferred partial melt has no substantial effect on the large-scale viscosity of the asthenosphere. These results imply the presence of a globally extensive, partially molten zone embedded within the asthenosphere, but that low asthenospheric viscosity is controlled primarily by gradual pressure and temperature variations with depth.  more » « less
Award ID(s):
1925939 1853856 2045292 1927216
NSF-PAR ID:
10400593
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nature Geoscience
Volume:
16
Issue:
2
ISSN:
1752-0894
Page Range / eLocation ID:
175 to 181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Seismic observations indicate that the lowermost mantle above the core-mantle boundary is strongly heterogeneous. Body waves reveal a variety of ultra-low velocity zones (ULVZs), which extend not more than 100 km above the core-mantle boundary and have shear velocity reductions of up to 30 per cent. While the nature and origin of these ULVZs remain uncertain, some have suggested they are evidence of partial melting at the base of mantle plumes. Here we use coupled geodynamic/thermodynamic modelling to explore the hypothesis that present-day deep mantle melting creates ULVZs and introduces compositional heterogeneity in the mantle. Our models explore the generation and migration of melt in a deforming and compacting host rock at the base of a plume in the lowermost mantle. We test whether the balance of gravitational and viscous forces can generate partially molten zones that are consistent with the seismic observations. We find that for a wide range of plausible melt densities, permeabilities and viscosities, lower mantle melt is too dense to be stirred into convective flow and instead sinks down to form a completely molten layer, which is inconsistent with observations of ULVZs. Only if melt is less dense or at most ca. 1 per cent more dense than the solid, or if melt pockets are trapped within the solid, can melt remain suspended in the partial melt zone. In these cases, seismic velocities would be reduced in a cone at the base of the plume. Generally, we find partial melt alone does not explain the observed ULVZ morphologies and solid-state compositional variation is required to explain the anomalies. Our findings provide a framework for testing whether seismically observed ULVZ shapes are consistent with a partial melt origin, which is an important step towards constraining the nature of the heterogeneities in the lowermost mantle and their influence on the thermal, compositional, and dynamical evolution of the Earth. 
    more » « less
  2. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  3. SUMMARY

    We present a new, 3-D model of seismic velocity and anisotropy in the Pacific upper mantle, PAC13E. We invert a data set of single-station surface-wave phase-anomaly measurements sensitive only to Pacific structure for the full set of 13 anisotropic parameters that describe surface-wave anisotropy. Realistic scaling relationships for surface-wave azimuthal anisotropy are calculated from petrological information about the oceanic upper mantle and are used to help constrain the model. The strong age dependence in the oceanic velocities associated with plate cooling is also used as a priori information to constrain the model. We find strong radial anisotropy with vSH > vSV in the upper mantle; the signal peaks at depths of 100–160 km. We observe an age dependence in the depth of peak anisotropy and the thickness of the anisotropic layer, which both increase with seafloor age, but see little age dependence in the depth to the top of the radially anisotropic layer. We also find strong azimuthal anisotropy, which typically peaks in the asthenosphere. The azimuthal anisotropy at asthenospheric depths aligns better with absolute-plate-motion directions while the anisotropy within the lithosphere aligns better with palaeospreading directions. The relative strengths of radial and azimuthal anisotropy are consistent with A-type olivine fabric. Our findings are generally consistent with an explanation in which corner flow at the ridge leads to the development and freezing-in of anisotropy in the lithosphere, and shear between the lithosphere and underlying asthenosphere leads to anisotropy beneath the plate. We also observe large regions within the Pacific basin where the orientation of anisotropy and the absolute-plate-motion direction differ; this disagreement suggests the presence of shear in the asthenosphere that is not aligned with absolute-plate-motion directions. Azimuthal-anisotropy orientation rotates with depth; the depth of the maximum vertical gradient in the fast-axis orientation tends to be age dependent and agrees well with a thermally controlled lithosphere–asthenosphere boundary. We observe that azimuthal-anisotropy strength at shallow depths depends on half-spreading rate, with higher spreading rates associated with stronger anisotropy. Our model implies that corner flow is more efficient at aligning olivine to form lattice-preferred orientation anisotropy fabrics in the asthenosphere when the spreading rate at the ridge is higher.

     
    more » « less
  4. Abstract

    This study presents an improved approach to common‐conversion point stacking of converted body waves that incorporates scattering kernels, accurate and efficient measurement of stack uncertainties, and an alternative method for estimating free surface seismic velocities. To better separate waveforms into thePandSVcomponents to calculate receiver functions, we developed an alternative method to measure near‐surface compressional and shear wave velocities from particle motions. To more accurately reflect converted phase scattering kernels in the common‐conversion point stack, we defined new weighting functions to project receiver function amplitudes only to locations where sensitivities to horizontal discontinuities are high. To better quantify stack uncertainties, we derived an expression for the standard deviation of the stack amplitude that is more efficient than bootstrapping and can be used for any problem requiring the standard deviation of a weighted average. We tested these improved methods onSpphase data from the Anatolian region, using multiple band‐pass filters to image velocity gradients of varying depth extents. Common conversion point stacks of 23,787Spreceiver functions demonstrate that the new weighting functions produce clearer and more continuous mantle phases, compared to previous approaches. The stacks reveal a positive velocity gradient at 80–150 km depth that is consistent with the base of an asthenospheric low‐velocity layer. This feature is particularly strong in stacks of longer period data, indicating it represents a gradual velocity gradient. At shorter periods, a lithosphere‐asthenosphere boundary phase is observed at 60–90 km depth, marking the top of the low‐velocity layer.

     
    more » « less
  5. Abstract

    The differential motion between the lithosphere and the asthenosphere is aseismic, so the magnetotelluric (MT) method plays an important role in studying the depth and nature of the lithosphere‐asthenosphere boundary (LAB). In March 2016, we deployed 39 marine MT instruments across the Middle Atlantic Ridge (MAR), 2,000 km away from the African coast, to study the evolution of the LAB with ages out to 45 million years (My). The MT acquisition time was limited to about 60 days by battery life. After analyzing dimensionality and coast effects for the MT data, determinant data were inverted for two‐dimensional resistivity models along two profiles north and south of the Chain Fracture Zone (CFZ). The imaged thickness of the lithospheric lid (>100 Ωm) ranges from 20 to 80 km, generally thickening with age. In the north of CFZ, punctuated low‐resistivity anomalies (<1 Ωm), likely associated with potential partial melts, occur along its base. In the south of CFZ, the base of the resistive lid is demarcated by a low‐resistivity channel (<1 Ωm) most likely fed by deeper melts. Sensitivity analyses and structural recovery tests indicate the robustness of these features. Resistivity models are in good agreement with results of seismic data. These results imply that partial melt is persistent over geologic timescales and that the LAB is dynamic features fed by upward percolation of mantle melt. The melt fraction is about 1–7% based on the resistivity, temperature, pressure, and hydrous basalt models, which is consistent with petrophysical observations.

     
    more » « less