A Reynolds-averaged two-phase Eulerian model for sediment transport, SedFoam, is utilized in a twodimensional domain for a given sediment grain size, flow period, and mobility number to study the asymmetric and skewed flow effects on the sediment transport over coarse-sand migrating ripples. First, the model is validated with a full-scale water tunnel experiment of orbital ripple driven by acceleration skewed (asymmetric) oscillatory flow with good agreement in the flow velocity, net sediment transport, and ripple migration rate. The model results showed that the asymmetric flow causes a net onshore sediment transport of both suspended and near-bed load (the conventional bed load and part of the near-bed suspended load, responsible for ripple migration). The suspended load transport is driven by the “positive phase-lag” effect, while the near-bed transport is due to the large erosion of the boundary layer on the stoss flank, sediment avalanching on the lee flank, and the returning flux induced by the stoss vortex. Together, these processes result in a net onshore transport rate. In contrast, for an energetic velocity skewed (skewed) flow, the net transport rate is offshore directed. This is due to a larger offshore-directed suspended load transport rate, resulting from the “negative phase-lag” effect, compared to the onshore-directed near-bed load transport rate. Compared to the asymmetric flow, the onshore near-bed load transport (and migration) rate is limited by the larger offshore directed flux associated with returning flow on the lee side, due to a stronger lee vortex generation during the onshore flow half-cycle. In the combined asymmetric-skewed case, the near-bed load and migration rate are higher than in the asymmetric flow case. Moreover, the offshore-directed suspended load is much smaller compared to the skewed flow case due to a competition between the negative (due to velocity skewness) and positive (due to acceleration skewness) phase-lag effects. As a result, the net transport rate is onshore directed but slightly smaller than the asymmetric flow case.
more »
« less
Mean Velocity and Shear Stress Distribution in Floating Treatment Wetlands: An Analytical Study
Abstract Floating treatment wetlands (FTWs) are efficient at wastewater treatment; however, data and physical models describing water flow through them remain limited. A two‐domain model is proposed dividing the flow region into an upper part characterizing the flow through suspended vegetation and an inner part describing the vegetation‐free zone. The suspended vegetation domain is represented as a porous medium characterized by constant permeability thereby allowing Biot's Law to be used to describe the mean velocity and stress profiles. The flow in the inner part is bounded by asymmetric stresses arising from interactions with the suspended vegetated (porous) base and solid channel bed. An asymmetric eddy viscosity model is employed to derive an integral expression for the shear stress and the mean velocity profiles in this inner layer. The solution features an asymmetric shear stress index that reflects two different roughness conditions over the vegetation‐induced auxiliary bed and the physical channel bed. A phenomenological model is then presented to explain this index. An expression for the penetration depth into the porous medium defined by 10% of the maximum shear stress is also derived. The predicted shear stress profile, local mean velocity profile, and bulk velocity agree with the limited experiments published in the literature.
more »
« less
- PAR ID:
- 10455511
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 55
- Issue:
- 8
- ISSN:
- 0043-1397
- Page Range / eLocation ID:
- p. 6436-6449
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The evolution of bed shear stress in open-channel flow due to a sudden change in bed roughness was investigated experimentally for rough-to-smooth (RTS) and smooth-to-rough (STR) transitions. The velocity field was measured in the longitudinal-vertical plane from upstream to downstream using a Particle Image Velocimetry system. The bed shear stress was determined from the measured velocity profile and water depth using various methods. It was found that the variation of bed shear stress in gradually varied flow through a roughness transition was influenced by both flow depth and bottom roughness. In both RTS and STR transitions, the bed shear stress adjusted to the new bed condition almost immediately even though the velocity profile away from the bed was still evolving, but unlike external and close-conduit flows the bed shear stress in open-channel flows continued to evolve until the flow depth was uniform. It is shown that the evolution of bed shear stress in a STR transition is dependent on the choice of the displacement height on the rough bed, which affects the mixing length used to derive the logarithmic velocity profile and equivalent roughness. Bed shear stress variation consistent with published data was obtained when the$${k}_{s}/{d}_{90}$$ ratio was determined as a function of the$$h/{d}_{90}$$ ratio, where$${k}_{s}$$ is the equivalent roughness height,$$h$$ is the flow depth, and$${d}_{90}$$ is the grain diameter with 90% of finer particles.more » « less
-
null (Ed.)We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow.more » « less
-
The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios (AR=l/b, where l and b are the length and width of the blade, respectively) and incoming flow velocities was experimentally investigated in a water channel. A surface scanner was implemented to quantify bed topography, and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows. The results showed that due to the deflection of incoming flow, the velocity magnitude increased at the lateral sides of the blade, thereby producing distinctive symmetric scour holes in these regions. The normalized morphology profiles of the sedimentary bed, which were extracted along the streamwise direction at the location of the maximum erosion depth, exhibited a self-similar pattern that closely followed a sinusoidal wave profile. The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade. At a given flow velocity, the blade with lower aspect ratios exhibited less significant deformation, causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes. Further investigation indicated that when the blade underwent slight deformation, the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed. Supported with measurements, a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.more » « less
-
Abstract Distribution of bed shear stress is the critical factor in regulating the meandering of single-thread rivers. However, the impact of ice cover on bed shear stress is largely unknown. In this study, we develop a theoretical model of cross-stream momentum balance to examine the distribution of bed shear stresses in ice-covered meandering rivers. To validate the theoretical model, field surveys were carried out in a river reach of the Red River in Fargo, North Dakota. Data monitoring was completed using an Acoustic Doppler Current Profiler to obtain time-averaged velocity profiles. Our theoretical model indicates that an ice covering develops high-shear zones near both the inner and outer banks, which might exacerbate sediment transport and enhance bank erosion. Velocity measurements confirm the results of the proposed model and demonstrate a clear impact of meandering river banks on velocity profiles and secondary flow patterns under ice cover. Based on our results, we hypothesize that ice cover increases turbulent stresses near banks, which in turn lead to the enhancement of the bed shear stress. Our work provides new insights into the impact of ice cover on bed shear stress distribution, which could play an important role in driving sediment-transport processes and the long-term morphodynamic evolution of meandering rivers seasonally covered by ice.more » « less
An official website of the United States government
