Water mixing is a critical mechanism in marine habitats that governs many important processes, including nutrient transport. Physical mechanisms, such as winds or tides, are primarily responsible for mixing effects in shallow coastal systems, but the sheltered habitats adjacent to mangroves experience very low turbulence and vertical mixing. The significance of biogenic mixing in pelagic habitats has been investigated but remains unclear. In this study, we show that the upside-down jellyfish
Upside-down jellyfish, genus
- Award ID(s):
- 2100703
- PAR ID:
- 10400684
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Cassiopea sp. plays a significant role with respect to biogenic contributions to water column mixing within its shallow natural habitat (m deep). The mixing contribution was determined by high-resolution flow velocimetry methods in both the laboratory and the natural environment. We demonstrate that Cassiopea sp. continuously pump water from the benthos upward in a vertical jet with flow velocities on the scale of centimeters per second. The volumetric flow rate was calculated to be 212 L⋅h-1for average-sized animals (8.6 cm bell diameter), which translates to turnover of the entire water column every 15 min for a median population density (29 animals per m2). In addition, we foundCassiopea sp. are capable of releasing porewater into the water column at an average rate of 2.64 mL⋅h−1per individual. The release of nutrient-rich benthic porewater combined with strong contributions to water column mixing suggests a role forCassiopea sp. as an ecosystem engineer in mangrove habitats. -
Upside-down jellyfish, Cassiopea , are prevalent in warm and shallow parts of the oceans throughout the world. They are unique among jellyfish in that they rest upside down against the substrate and extend their oral arms upwards. This configuration allows them to continually pull water along the substrate, through their oral arms, and up into the water column for feeding, nutrient and gas exchange, and waste removal. Although the hydrodynamics of the pulsation of jellyfish bells has been studied in many contexts, it is not clear how the presence or absence of the substrate alters the bulk flow patterns generated by Cassiopea medusae. In this paper, we use three-dimensional (3D) particle tracking velocimetry and 3D immersed boundary simulations to characterize the flow generated by upside-down jellyfish. In both cases, the oral arms are removed, which allows us to isolate the effect of the substrate. The experimental results are used to validate numerical simulations, and the numerical simulations show that the presence of the substrate enhances the generation of vortices, which in turn augments the upward velocities of the resulting jets. Furthermore, the presence of the substrate creates a flow pattern where the water volume within the bell is ejected with each pulse cycle. These results suggest that the positioning of the upside-down jellyfish such that its bell is pressed against the ocean floor is beneficial for augmenting vertical flow and increasing the volume of water sampled during each pulse.more » « less
-
Abstract Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusa
Aurelia aurita during which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish ‘skid’ through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situ and result in frequent turns by naturally swimming medusae. -
Abstract Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish
Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describeC. xamachana stinging-cell structures that we term cassiosomes. These structures are released withinC. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group asC. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents ofC. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water. -
Abstract Geochemical analyses of trace elements in the ocean water column have suggested that pelagic clay‐rich sediments are a major source of various elements to bottom‐waters. However, corresponding high‐quality measurements of trace element concentrations in porewaters of pelagic clay‐rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr−1are Ba 3.9 ± 3.6 × 109, Mn 3.4 ± 3.5 × 108, Co 2.6 ± 1.3 × 107, Ni 9.6 ± 8.6 × 108, Cu 4.6 ± 2.4 × 109, Cr 1.7 ± 1.1 × 108, As 6.1 ± 7.0 × 108, V 6.0 ± 2.5 × 109. With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom‐water concentrations and ocean residence time of the studied elements.