skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supervised Dimensionality Reduction and Visualization using Centroid-Encoder
We propose a new tool for visualizing complex, and potentially large and high-dimensional, data sets called Centroid-Encoder (CE). The architecture of the Centroid-Encoder is similar to the autoencoder neural network but it has a modified target, i.e., the class centroid in the ambient space. As such, CE incorporates label information and performs a supervised data visualization. The training of CE is done in the usual way with a training set whose parameters are tuned using a validation set. The evaluation of the resulting CE visualization is performed on a sequestered test set where the generalization of the model is assessed both visually and quantitatively. We present a detailed comparative analysis of the method using a wide variety of data sets and techniques, both supervised and unsupervised, including NCA, non-linear NCA, t-distributed NCA, t-distributed MCML, supervised UMAP, supervised PCA, Colored Maximum Variance Unfolding, supervised Isomap, Parametric Embedding, supervised Neighbor Retrieval Visualizer, and Multiple Relational Embedding. An analysis of variance using PCA demonstrates that a non-linear preprocessing by the CE transformation of the data captures more variance than PCA by dimension.  more » « less
Award ID(s):
1830676
PAR ID:
10400710
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
23
Issue:
20
ISSN:
1532-4435
Page Range / eLocation ID:
1-34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The t-distributed stochastic neighbor embedding (t-SNE) method is one of the leading techniques for data visualization and clustering. This method finds lower-dimensional embedding of data points while minimizing distortions in distances between neighboring data points. By construction, t-SNE discards information about large-scale structure of the data. We show that adding a global cost function to the t-SNE cost function makes it possible to cluster the data while preserving global intercluster data structure. We test the new global t-SNE (g-SNE) method on one synthetic and two real data sets on flower shapes and human brain cells. We find that significant and meaningful global structure exists in both the plant and human brain data sets. In all cases, g-SNE outperforms t-SNE and UMAP in preserving the global structure. Topological analysis of the clustering result makes it possible to find an appropriate trade-off of data distribution across scales. We find differences in how data are distributed across scales between the two subjects that were part of the human brain data set. Thus, by striving to produce both accurate clustering and positioning between clusters, the g-SNE method can identify new aspects of data organization across scales. 
    more » « less
  2. Abstract Visible hyperspectral imaging (HSI) is a fast and non-invasive imaging method that has been adapted by the field of conservation science to study painted surfaces. By collecting reflectance spectra from a 2D surface, the resulting 3D hyperspectral data cube contains millions of recorded spectra. While processing such large amounts of spectra poses an analytical and computational challenge, it also opens new opportunities to apply powerful methods of multivariate analysis for data evaluation. With the intent of expanding current data treatment of hyperspectral datasets, an innovative approach for data reduction and visualization is presented in this article. It uses a statistical embedding method known as t-distributed stochastic neighbor embedding (t-SNE) to provide a non-linear representation of spectral features in a lower 2D space. The efficiency of the proposed method for painted surfaces from cultural heritage is established through the study of laboratory prepared paint mock-ups, and medieval French illuminated manuscript. 
    more » « less
  3. Abstract MotivationThe rapid development of scRNA-seq technologies enables us to explore the transcriptome at the cell level on a large scale. Recently, various computational methods have been developed to analyze the scRNAseq data, such as clustering and visualization. However, current visualization methods, including t-SNE and UMAP, are challenged by the limited accuracy of rendering the geometric relationship of populations with distinct functional states. Most visualization methods are unsupervised, leaving out information from the clustering results or given labels. This leads to the inaccurate depiction of the distances between the bona fide functional states. In particular, UMAP and t-SNE are not optimal to preserve the global geometric structure. They may result in a contradiction that clusters with near distance in the embedded dimensions are in fact further away in the original dimensions. Besides, UMAP and t-SNE cannot track the variance of clusters. Through the embedding of t-SNE and UMAP, the variance of a cluster is not only associated with the true variance but also is proportional to the sample size. ResultsWe present supCPM, a robust supervised visualization method, which separates different clusters, preserves the global structure and tracks the cluster variance. Compared with six visualization methods using synthetic and real datasets, supCPM shows improved performance than other methods in preserving the global geometric structure and data variance. Overall, supCPM provides an enhanced visualization pipeline to assist the interpretation of functional transition and accurately depict population segregation. Availability and implementationThe R package and source code are available at https://zenodo.org/record/5975977#.YgqR1PXMJjM. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. null (Ed.)
    This paper proposes a scalable multilevel framework for the spectral embedding of large undirected graphs. The proposed method first computes much smaller yet sparse graphs while preserving the key spectral (structural) properties of the original graph, by exploiting a nearly-linear time spectral graph coarsening approach. Then, the resultant spectrally-coarsened graphs are leveraged for the development of much faster algorithms for multilevel spectral graph embedding (clustering) as well as visualization of large data sets. We conducted extensive experiments using a variety of large graphs and datasets and obtained very promising results. For instance, we are able to coarsen the "coPapersCiteseer" graph with 0.43 million nodes and 16 million edges into a much smaller graph with only 13K (32X fewer) nodes and 17K (950X fewer) edges in about 16 seconds; the spectrally-coarsened graphs allow us to achieve up to 1,100X speedup for multilevel spectral graph embedding (clustering) and up to 60X speedup for t-SNE visualization of large data sets. 
    more » « less
  5. Abstract Discovery of target‐binding molecules, such as aptamers and peptides, is usually performed with the use of high‐throughput experimental screening methods. These methods typically generate large datasets of sequences of target‐binding molecules, which can be enriched with high affinity binders. However, the identification of the highest affinity binders from these large datasets often requires additional low‐throughput experiments or other approaches. Bioinformatics‐based analyses could be helpful to better understand these large datasets and identify the parts of the sequence space enriched with high affinity binders.BinderSpaceis an open‐source Python package that performs motif analysis, sequence space visualization, clustering analyses, and sequence extraction from clusters of interest. The motif analysis, resulting in text‐based and visual output of motifs, can also provide heat maps of previously measured user‐defined functional properties for all the motif‐containing molecules. Users can also run principal component analysis (PCA) and t‐distributed stochastic neighbor embedding (t‐SNE) analyses on whole datasets and on motif‐related subsets of the data. Functionally important sequences can also be highlighted in the resulting PCA and t‐SNE maps. If points (sequences) in two‐dimensional maps in PCA or t‐SNE space form clusters, users can perform clustering analyses on their data, and extract sequences from clusters of interest. We demonstrate the use ofBinderSpaceon a dataset of oligonucleotides binding to single‐wall carbon nanotubes in the presence and absence of a bioanalyte, and on a dataset of cyclic peptidomimetics binding to bovine carbonic anhydrase protein.BinderSpaceis openly accessible to the public via the GitHub website:https://github.com/vukoviclab/BinderSpace. 
    more » « less