skip to main content


Title: Maximum summer temperatures predict the temperature adaptation of Arctic soil bacterial communities
Abstract. Rapid warming of the Arctic terrestrial region has the potential to increase soil decomposition rates and form a carbon-driven feedback to future climate change. For an accurate prediction of the role of soil microbes in these processes, it will be important to understand the temperature responses of soil bacterial communities and implement them into biogeochemical models. The temperature adaptation of soil bacterial communities for a large part of the Arctic region is unknown. We evaluated the current temperature adaption of soil bacterial communities from 12 sampling sites in the sub- to High Arctic region. Temperature adaptation differed substantially between the soil bacterial communities of these sites, with estimates of optimal growth temperature (Topt) ranging between 23.4 ± 0.5 and 34.1 ± 3.7 ∘C. We evaluated possible statistical models for the prediction of the temperature adaption of soil bacterial communities based on different climate indices derived from soil temperature records or on bacterial community composition data. We found that highest daily average soil temperature was the best predictor for the Topt of the soil bacterial communities, increasing by 0.63 ∘C ∘C−1. We found no support for the prediction of temperature adaptation by regression tree analysis based on the relative abundance data of the most common bacterial species. Increasing summer temperatures will likely increase Topt of soil bacterial communities in the Arctic. Incorporating this mechanism into soil biogeochemical models and combining it with projections of soil temperature will help to reduce uncertainty in assessments of the vulnerability of soil carbon stocks in the Arctic.  more » « less
Award ID(s):
2220863
NSF-PAR ID:
10400901
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
20
Issue:
4
ISSN:
1726-4189
Page Range / eLocation ID:
767 to 780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spear, John R. (Ed.)
    ABSTRACT

    Adaptation of soil microbes due to warming from climate change has been observed, but it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have been experimentally heated to 5°C above ambient temperature with unheated controls for 30 years. We hypothesized that Alphaproteobacteria from warmed plots have (i) less temperature-sensitive growth rates; (ii) higher optimum growth temperatures; and (iii) higher maximum growth temperatures compared to isolates from control plots. We made high-throughput measurements of bacterial growth in liquid cultures over time and across temperatures from 22°C to 37°C in 2–3°C increments. We estimated growth rates by fitting Gompertz models to the growth data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum growth temperature were estimated by the Ratkowsky 1983 model and a modified Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran phylogenetic generalized least squares tests on isolates from warmed and control soils. Our results showed evidence of adaptation of higher optimum growth temperature of bacterial isolates from heated soils. However, we observed no evidence of adaptation of temperature sensitivity of growth and maximum growth temperature. Our project begins to capture the shape of the temperature response curves, but illustrates that the relationship between growth and temperature is complex and cannot be limited to a single point in the biokinetic range.

    IMPORTANCE

    Soils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the amount of carbon dioxide released into the atmosphere and buffers against climate change. Soil microbes drive biogeochemical cycling and contribute to soil health through organic matter breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates from warmed plots showed evidence of adaptation of optimum growth temperature. This suggests that increased microbial biomass and growth in a warming world could result in greater carbon storage. As temperatures increase, greater microbial activity may help reduce the soil carbon feedback loop. Our results provide insight on how atmospheric carbon cycling and soil health may respond in a warming world.

     
    more » « less
  2. Abstract

    Understanding whether soil microbial respiration adapts to the ambient thermal climate with an enhanced or compensatory response, hence potentially stimulating or slowing down soil carbon losses with warming, is key to accurately forecast and model climate change impacts on the global carbon cycle. Despite the interest in this topic and the plethora of recent studies in natural ecosystems, it has been seldom explored in croplands. Using two recently published independent datasets of soil microbial metabolic quotient (MMQ; microbial respiration rate per unit biomass) and carbon use efficiency (CUE; partitioning of C to microbial growth vs. respiration), we find a compensatory thermal adaptive response for MMQ in global croplands. That is, mean annual temperature (MAT) has a negative effect on MMQ. However, this compensatory thermal adaptation is only half or less of that found in previous studies for noncultivated ecosystems. In contrast to the negative MMQ‐MAT pattern, microbial CUE increases with MAT across global croplands. By incorporating this positive CUE‐MAT relationship (greater C partitioning into microbial growth rather than respiration with increasing temperature) into a microbial‐explicit soil organic carbon model, we successfully predict the thermal compensation of MMQ observed in croplands. Our model‐data integration and database cross‐validation suggest that a warmer climate may select for microbial communities with higher CUE, providing a plausible mechanism for their compensatory metabolic response. By helping to identify appropriate representations of microbial physiological processes in soil biogeochemical models, our work will help build confidence in model projections of cropland C dynamics under a changing climate.

     
    more » « less
  3. As the Arctic region moves into uncharted territory under a warming climate, it is important to refine the terrestrial biosphere models (TBMs) that help us understand and predict change. One fundamental uncertainty in TBMs relates to model parameters, configuration variables internal to the model whose value can be estimated from data. We incorporate a version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as probability distributions, estimates parameters based on a synthesis of available field data, and then quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters. We examined how variation in 21 parameters in the equation for gross primary production influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary productivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C). We set up different parameterizations of TEM across a range of tundra types (tussock tundra, heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal transect extending from the coastal plain near Utqiaġvik to the southern foothills of the Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be connected to a wider range of parameters, underlining the importance of assessing tundra community processes across environmental gradients or geographic locations. Generally, across sites, the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncertainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our study illustrates the complexity inherent in evaluating parameter uncertainty across highly heterogeneous arctic tundra plant communities. It also provides a framework for iteratively testing how newly collected field data related to key parameters may result in more effective forecasting of Arctic change. 
    more » « less
  4. Abstract Background Tall deciduous shrubs are increasing in range, size and cover across much of the Arctic, a process commonly assumed to increase carbon (C) storage. Major advances in remote sensing have increased our ability to monitor changes aboveground, improving quantification and understanding of arctic greening. However, the vast majority of C in the Arctic is stored in soils, where changes are more uncertain. Scope We present pilot data to argue that shrub expansion will cause changes in rhizosphere processes, including the development of new mycorrhizal associations that have the potential to promote soil C losses that substantially exceed C gains in plant biomass. However, current observations are limited in their spatial extent, and mechanistic understanding is still developing. Extending measurements across different regions and tundra types would greatly increase our ability to predict the biogeochemical consequences of arctic vegetation change, and we present a simple method that would allow such data to be collected. Conclusions Shrub expansion in the Arctic could promote substantial soil C losses that are unlikely to be offset by increases in plant biomass. However, confidence in this prediction is limited by a lack of information on how soil C stocks vary between contrasting Arctic vegetation communities; this needs to be addressed urgently. 
    more » « less
  5. Abstract

    Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO2flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO2database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO2–C m−2d−1) relative to tundra (0.94 ± 0.4 g CO2–C m−2d−1). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO2–C m−2d−1; tundra: 0.18 ± 0.16 g CO2–C m−2d−1) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO2–C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO2to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change.

     
    more » « less