skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preliminary Statistical Characterizations of the Lowest Kilometer Time–Height Profiles of Rainfall Rate Using a Vertically Pointing Radar
A realistic approach for gathering high-resolution observations of the rainfall rate, R, in the vertical plane is to use data from vertically pointing Doppler radars. After accounting for the vertical air velocity and attenuation, it is possible to determine the fine, spatially resolved drop size spectra and to calculate R for further statistical analyses. The first such results in a vertical plane are reported here. Specifically, we present results using MRR-Pro Doppler radar observations at resolutions of ten meters in height over the lowest 1.28 km, as well as ten seconds in time, over four sets of observations using two different radars at different locations. Both the correlation functions and power spectra are useful for translating observations and numerical model outputs of R from one scale down to other scales that may be more appropriate for particular applications, such as flood warnings and soil erosion, for example. However, it was found in all cases that, while locally applicable radial power spectra could be calculated, because of statistical heterogeneity most of the power spectra lost all generality, and proper correlation functions could not be computed in general except for one 17-min interval. Nevertheless, these results are still useful since they can be combined to develop catalogs of power spectra over different meteorological conditions and in different climatological settings and locations. Furthermore, even with the limitations of these data, this approach is being used to gain a deeper understanding of rainfall to be reported in a forthcoming paper.  more » « less
Award ID(s):
2001490 1823334 1532977 2001343
PAR ID:
10401050
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
13
Issue:
4
ISSN:
2073-4433
Page Range / eLocation ID:
635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rescaling of rainfall requires measurements of rainfall rates over many dimensions. This paper develops one approach using 10 m vertical spatial observations of the Doppler spectra of falling rain every 10 s over intervals varying from 15 up to 41 min in two different locations and in two different years using two different micro-rain radars (MRR). The transformation of the temporal domain into spatial observations uses the Taylor “frozen” turbulence hypothesis to estimate an average advection speed over an entire observation interval. Thus, when no other advection estimates are possible, this paper offers a new approach for estimating the appropriate frozen turbulence advection speed by minimizing power spectral differences between the ensemble of purely spatial radial power spectra observed at all times in the vertical and those using the ensemble of temporal spectra at all heights to yield statistically reliable scaling relations. Thus, it is likely that MRR and other vertically pointing Doppler radars may often help to obviate the need for expensive and immobile large networks of instruments in order to determine such scaling relations but not the need of those radars for surveillance. 
    more » « less
  2. It is important to understand the statistical–physical structure of the rain in the vertical so that observations aloft can be translated meaningfully into what will occur at the surface. In order to achieve this understanding, it is necessary to gather high temporal and spatial resolution observations of rain in the vertical. This can be achieved by translating radar Doppler spectra into drop size distributions. A long-standing difficulty in using such measurements, however, is the problem of vertical air motion, which can shift the Doppler spectra and therefore significantly alter the deduced drop size distributions and integrated variables. In this work, we overcome this difficulty by requiring that the measured radar reflectivity and the calculated rainfall rates satisfy fundamental physical theory. As a consequence, the mean vertical airspeed can be estimated and removed. Application of this new approach is demonstrated using vertically pointing Doppler radar observations in weak convection. It is shown that the new approach produces what appear to be better estimates of the rainfall rates as well as estimates of the temporal and spatial regionally coherent updraft and downdrafts occurring in the precipitation. The technique is readily applicable to other radars, especially those operating at non-attenuating frequencies. 
    more » « less
  3. Abstract. Part I of this history describes the motivations for developing radars in the high frequency (HF) band to study plasma density irregularities in the F region of the auroral zone and polar cap ionospheres. French and Swedish scientists were the first to use HF frequencies to study the Doppler velocities of HF radar backscatter from F-region plasma density irregularities over northern Sweden. These observations encouraged the author of this paper to pursue similar measurements over northeastern Alaska, and this eventually led to the construction of a large HF-phased-array radar at Goose Bay, Labrador, Canada. This radar utilized frequencies from 8–20 MHz and could be electronically steered over 16 beam directions, covering a 52∘ azimuth sector. Subsequently, similar radars were constructed at Schefferville, Quebec, and Halley Station, Antarctica. Observations with these radars showed that F-region backscatter often exhibited Doppler velocities that were significantly above and below the ion-acoustic velocity. This distinguished HF Doppler measurements from prior measurements of E-region irregularities that were obtained with radars operating at very high frequency (VHF) and ultra-high frequency (UHF). Results obtained with these early HF radars are also presented. They include comparisons of Doppler velocities observed with HF radars and incoherent scatter radars, comparisons of plasma convection patterns observed simultaneously in conjugate hemispheres, and the response of these patterns to changes in the interplanetary magnetic field, transient velocity enhancements in the dayside cusp, preferred frequencies for geomagnetic pulsations, and observations of medium-scale atmospheric gravity waves with HF radars. 
    more » « less
  4. null (Ed.)
    Abstract This is the second of a two-part study that explores the capabilities of a mesoscale atmospheric model to reproduce the near-surface wind fields in hurricanes over land. The Weather Research and Forecasting (WRF) Model is used with two planetary boundary layer parameterizations: the Yonsei University (YSU) and the Mellor–Yamada–Janjić (MYJ) schemes. The first part presented the modeling framework and initial conditions used to produce simulations of Hurricane Wilma (2005) that closely reproduced the track, intensity, and size of its wind field as it passed over South Florida. This part explores how well these simulations can reproduce the winds at fixed points over land by making comparisons with observations from airports and research weather stations. The results show that peak wind speeds are remarkably well reproduced at several locations. Wind directions are evaluated in terms of the inflow angle relative to the storm center, and the simulated inflow angles are generally smaller than observed. Localized peak wind events are associated with vertical vorticity maxima in the boundary layer with horizontal scales of 5–10 km. The boundary layer winds are compared with wind profiles obtained by velocity–azimuth display (VAD) analyses from National Weather Service Doppler radars at Miami and Key West, Florida; results from these comparisons are mixed. Nonetheless the comparisons with surface observations suggest that when short-term hurricane forecasts can sufficiently predict storm track, intensity, and size, they will also be able to provide useful information on extreme winds at locations of interest. 
    more » « less
  5. Rain is often characterized using statistical approaches. Among the most common are temporal correlations and power (variance) spectra from time series measurements at a single location. Likewise, temporal observations over a network are used to deduce a radial distribution function and spatial power spectra. Often the spatial and temporal structures are treated as independent of each other. This assumption is no longer valid when the rain moves horizontally. Moreover, observations involve filtering of the data. In time, this may involve sampling over a sufficiently long period so as to increase statistical confidence in the measurement. The same is also true for spatial observations over a network which must contain a sufficient number of instruments for a reliable characterization of the spatial variability. This also usually includes some form of averaging over time as well. Temporal averaging amounts to a low pass filter that attenuates contributions from higher frequencies. In contrast, the finite dimension of a network acts as a high pass filter that tends to suppress the lower wavenumbers much larger than the dimension of the network. In this work the effects of both the advection of the rain and the observational filtering are considered for wide-sense statistically stationary and homogeneous rain along one-dimension for rain exponentially correlated in both space and time. It is found that advection and filtering can significantly shift the portrayal of the rain from the true structures. Consequently, rainfall characterizations from observations should not be over-generalized to other situations until the advection velocity is first taken into account using additional observations. 
    more » « less