skip to main content


Title: Domain-Informed Neural Networks for Interaction Localization Within Astroparticle Experiments
This work proposes a domain-informed neural network architecture for experimental particle physics, using particle interaction localization with the time-projection chamber (TPC) technology for dark matter research as an example application. A key feature of the signals generated within the TPC is that they allow localization of particle interactions through a process called reconstruction (i.e., inverse-problem regression). While multilayer perceptrons (MLPs) have emerged as a leading contender for reconstruction in TPCs, such a black-box approach does not reflect prior knowledge of the underlying scientific processes. This paper looks anew at neural network-based interaction localization and encodes prior detector knowledge, in terms of both signal characteristics and detector geometry, into the feature encoding and the output layers of a multilayer (deep) neural network. The resulting neural network, termed Domain-informed Neural Network (DiNN), limits the receptive fields of the neurons in the initial feature encoding layers in order to account for the spatially localized nature of the signals produced within the TPC. This aspect of the DiNN, which has similarities with the emerging area of graph neural networks in that the neurons in the initial layers only connect to a handful of neurons in their succeeding layer, significantly reduces the number of parameters in the network in comparison to an MLP. In addition, in order to account for the detector geometry, the output layers of the network are modified using two geometric transformations to ensure the DiNN produces localizations within the interior of the detector. The end result is a neural network architecture that has 60% fewer parameters than an MLP, but that still achieves similar localization performance and provides a path to future architectural developments with improved performance because of their ability to encode additional domain knowledge into the architecture.  more » « less
Award ID(s):
1940074
NSF-PAR ID:
10401061
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
5
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less
  2. This paper presents a new algorithm, Reinforced and Informed Network-based Clustering (RINC), for finding unknown groups of similar data objects in sparse and largely non-overlapping feature space where a network structure among features can be observed. Sparse and non-overlapping unlabeled data become increasingly common and available especially in text mining and biomedical data mining. RINC inserts a domain informed model into a modelless neural network. In particular, our approach integrates physically meaningful feature dependencies into the neural network architecture and soft computational constraint. Our learning algorithm efficiently clusters sparse data through integrated smoothing and sparse auto-encoder learning. The informed design requires fewer samples for training and at least part of the model becomes explainable. The architecture of the reinforced network layers smooths sparse data over the network dependency in the feature space. Most importantly, through back-propagation, the weights of the reinforced smoothing layers are simultaneously constrained by the remaining sparse auto-encoder layers that set the target values to be equal to the raw inputs. Empirical results demonstrate that RINC achieves improved accuracy and renders physically meaningful clustering results. 
    more » « less
  3. null (Ed.)
    Deep neural networks (DNNs) are known for extracting useful information from large amounts of data. However, the representations learned in DNNs are typically hard to interpret, especially in dense layers. One crucial issue of the classical DNN model such as multilayer perceptron (MLP) is that neurons in the same layer of DNNs are conditionally independent of each other, which makes co-training and emergence of higher modularity difficult. In contrast to DNNs, biological neurons in mammalian brains display substantial dependency patterns. Specifically, biological neural networks encode representations by so-called neuronal assemblies: groups of neurons interconnected by strong synaptic interactions and sharing joint semantic content. The resulting population coding is essential for human cognitive and mnemonic processes. Here, we propose a novel Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization 1 to model neuronal correlations and dependencies, inspired by cell assembly theory from neuroscience. Experimental results show that BEAN enables the formation of interpretable neuronal functional clusters and consequently promotes a sparse, memory/computation-efficient network without loss of model performance. Moreover, our few-shot learning experiments demonstrate that BEAN could also enhance the generalizability of the model when training samples are extremely limited. 
    more » « less
  4. Traditional models of motor control typically operate in the domain of continuous signals such as spike rates, forces, and kinematics. However, there is growing evidence that precise spike timings encode significant information that coordinates and causally influences motor control. Some existing neural network models incorporate spike timing precision but they neither predict motor spikes coordinated across multiple motor units nor capture sensory-driven modulation of agile locomotor control. In this paper, we propose a visual encoder and model of a sensorimotor system based on a recurrent neural network (RNN) that utilizes spike timing encoding during smooth pursuit target tracking. We use this to predict a nearly complete, spike-resolved motor program of a hawkmoth that requires coordinated millisecond precision across 10 major flight motor units. Each motor unit enervates one muscle and utilizes both rate and timing encoding. Our model includes a motion detection mechanism inspired by the hawkmoth's compound eye, a convolutional encoder that compresses the sensory input, and a simple RNN that is sufficient to sequentially predict wingstroke-to-wingstroke modulation in millisecond-precise spike timings. The two-layer output architecture of the RNN separately predicts the occurrence and timing of each spike in the motor program. The dataset includes spikes recorded from all motor units during a tethered flight where the hawkmoth attends to a moving robotic flower, with a total of roughly 7000 wingstrokes from 16 trials on 5 hawkmoth subjects. Intra-trial and same-subject inter-trial predictions on the test data show that nearly every spike can be predicted within 2 ms of its known spike timing precision values. Whereas, spike occurrence prediction accuracy is about 90%. Overall, our model can predict the precise spike timing of a nearly complete motor program for hawkmoth flight with a precision comparable to that seen in agile flying insects. Such an encoding framework that captures visually-modulated precise spike timing codes and coordination can reveal how organisms process visual cues for agile movements. It can also drive the next generation of neuromorphic controllers for navigation in complex environments. 
    more » « less
  5. Significance: The performance of traditional approaches to decoding movement intent from electromyograms (EMGs) and other biological signals commonly degrade over time. Furthermore, conventional algorithms for training neural network-based decoders may not perform well outside the domain of the state transitions observed during training. The work presented in this paper mitigates both these problems, resulting in an approach that has the potential to substantially he quality of live of people with limb loss. Objective: This paper presents and evaluates the performance of four decoding methods for volitional movement intent from intramuscular EMG signals. Methods: The decoders are trained using dataset aggregation (DAgger) algorithm, in which the training data set is augmented during each training iteration based on the decoded estimates from previous iterations. Four competing decoding methods: polynomial Kalman filters (KFs), multilayer perceptron (MLP) networks, convolution neural networks (CNN), and Long-Short Term Memory (LSTM) networks, were developed. The performance of the four decoding methods was evaluated using EMG data sets recorded from two human volunteers with transradial amputation. Short-term analyses, in which the training and cross-validation data came from the same data set, and long-term analyses training and testing were done in different data sets, were performed. Results: Short-term analyses of the decoders demonstrated that CNN and MLP decoders performed significantly better than KF and LSTM decoders, showing an improvement of up to 60% in the normalized mean-square decoding error in cross-validation tests. Long-term analysis indicated that the CNN, MLP and LSTM decoders performed significantly better than KF-based decoder at most analyzed cases of temporal separations (0 to 150 days) between the acquisition of the training and testing data sets. Conclusion: The short-term and long-term performance of MLP and CNN-based decoders trained with DAgger, demonstrated their potential to provide more accurate and naturalistic control of prosthetic hands than alternate approaches. 
    more » « less