skip to main content


Title: Relationships between undergraduate instructors' conceptions of how students learn and their instructional practices
Abstract

Supporting changes in undergraduate science, technology, engineering, and mathematics (STEM) instruction requires an understanding of the relationship between STEM instructors' conceptions and practices. In this study, the authors used the Teacher‐Centered Systematic Reform (TCSR) model as a framework to understand how instructors' conceptions are related to their instructional practices. This multiple methods study included interviews and classroom observations of 22 STEM instructors. We used qualitative methods to describe instructors' conceptions of how students learn and quantitative methods, including a hierarchical cluster analysis, to analyze the types of relationships that exist between their conceptions and practices. Results indicated instructors had a wide range of conceptions that exist along a continuum from teacher‐centered to student‐centered. While many faculty members perceived student‐centered practices as valuable, they conceptualized these practices in different ways. Instructors implemented a wide range of instructional practices, and these practices varied independently of conceptions. We identified three distinct clusters of participants based on the relationships between instructors' conceptions and practices: congruent lecturers, congruent active learning facilitators, and incongruent lecturers. In the first two clusters, instructors' conceptions were aligned with their instructional practices. However, incongruent lecturers thought that students learn through active learning approaches but primarily lectured in their courses. Instructors in this group described several personal and contextual factors that influenced the relationship between their conceptions and practices. The results include an in‐depth portrayal of one participant in each cluster. We found that student‐centered conceptions may be necessary but are not sufficient for instructors to implement active learning. Implications focus on instructional and institutional change efforts. To promote instructional change most effectively, it is important to address each component of the TCSR model, including personal and contextual factors. A focus on conceptions and practices alone may not sufficiently support faculty members in overcoming barriers that limit active learning instruction.

 
more » « less
NSF-PAR ID:
10401196
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
60
Issue:
9
ISSN:
0022-4308
Format(s):
Medium: X Size: p. 2076-2110
Size(s):
["p. 2076-2110"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Dalby, Andrew R. (Ed.)
    Traditional teaching practices in undergraduate science, technology, engineering, and mathematics (STEM) courses have failed to support student success, causing many students to leave STEM fields and disproportionately affecting women and students of color. Although much is known about effective STEM teaching practices, many faculty continue to adhere to traditional methods, such as lecture. In this study, we investigated the factors that affect STEM faculty members’ instructional decisions about evidence-based instructional practices (EBIPs). We performed a qualitative analysis of semi-structured interviews with faculty members from the Colleges of Physical and Mathematical Sciences, Life Sciences, and Engineering who took part in a professional development program to support the use of EBIPs by STEM faculty at the university. We used an ecological model to guide our investigation and frame the results. Faculty identified a variety of personal, social, and contextual factors that influenced their instructional decision-making. Personal factors included attitudes, beliefs, and self-efficacy. Social factors included the influence of students, colleagues, and administration. Contextual factors included resources, time, and student characteristics. These factors interact with each other in meaningful ways that highlight the hyper-local social contexts that exist within departments and sub-department cultures, the importance of positive feedback from students and colleagues when implementing EBIPs, and the need for support from the administration for faculty who are in the process of changing their teaching. 
    more » « less
  2. Abstract Background

    An instructor’s conceptions of teaching and learning contribute to the establishment of learning environments that may benefit or hinder student learning. Previous studies have defined the continuum of teaching and learning conceptions, ranging from limited to complete, as well as the instructional practices that they help to inform (instructor-centered to student-centered), and the corresponding learning environments that these conceptions and practices establish, ranging from traditional to student-centered. Using the case of one STEM department at a research-intensive, minority serving institution, we explored faculty’s conceptions of teaching and learning and their resulting instructional practices, as well as uncovered their perspectives on the intradepartmental faculty interactions related to teaching. The study participants were drawn from both teaching-focused (called Professors of Teaching, PoTs) and traditional research (whom we call Research Professors, RPs) tenure-track faculty lines to identify whether differences existed amongst these two populations. We used interviews to explore faculty conceptions and analyzed syllabi to unveil how these conceptions shape instructional environments.

    Results

    Overall, PoTs exhibited complete conceptions of teaching and learning that emphasized student ownership of learning, whereas RPs possessed intermediate conceptions that focused more on transmitting knowledge and helping students prepare for subsequent courses. While both PoTs and RPs self-reported the use of active learning pedagogies, RPs were more likely to also highlight the importance of traditional lecture. The syllabi analysis revealed that PoTs enacted more student-centered practices in their classrooms compared to RPs. PoTs appeared to be more intentionally available to support students outside of class and encouraged student collaboration, while RPs focused more on the timeliness of assessments and enforcing more instructor-centered approaches in their courses. Finally, the data indicated that RPs recognized PoTs as individuals who were influential on their own teaching conceptions and practices.

    Conclusions

    Our findings suggest that departments should consider leveraging instructional experts who also possess a disciplinary background (PoTs) to improve their educational programs, both due to their student-centered impacts on the classroom environment and positive influence on their colleagues (RPs). This work also highlights the need for higher education institutions to offer appropriate professional development resources to enable faculty to reflect on their teaching and learning conceptions, aid in their pedagogical evolution, and guide the implementation of these conceptions into practice.

     
    more » « less
  3. An enormous reserve of information about the subglacial bedrock, tectonic and topographic evolution of Marie Byrd Land (MBL) exists within glaciomarine sediments of the Amundsen Sea shelf, slope and deep sea, and MBL marine shelf. Investigators of the NSF ICI-Hot and NSF Linchpin projects partnered with Arizona Laserchron Center to provide course-based undergraduate research experiences (CUREs) for from groups who do not ordinarily find access points to Antarctic science. Our courses enlist BIPOC and gender-expansive undergraduates in studies of ice-rafted debris (IRD) and bedrock samples, in order to impart skills, train in the use of research instrumentation, help students to develop confidence in their scientific abilities, and collaboratively address WAIS research questions at an early academic stage. CUREs afford benefits to graduate researchers and postdoctoral scientists, also, who join in as instructional faculty: CUREs allow GRs and PDs to engage in teaching that closely ties to their active research, yet provides practical experience to strengthen the academic portfolio (Cascella & Jez, 2018). Team members also develop art-science initiatives that engage students and community members who may not ordinarily engage with science, forging connections that make science relatable. Re-casting science topics through art centers personal connections and humanizes science, to promote understanding that goes beyond the purely analytical. Academic research shows that diverse undergraduates gain markedly from the convergence of art and science, and from involvement in collaborative research conducted within a CURE cohort, rather than as an individualized experience (e.g. Shanahan et al. 2022). The CUREs are offered as regular courses for credit, making access equitable via course enrollment. The course designation carries a legitimacy that is sought by students who balance academics with part-time employment. Course information is disseminated via STEM Bridge programs and/or an academic advising hub that reaches students from groups that are insufficiently represented within STEM and cryosphere science. CURE investigation of Amundsen Sea and WAIS problems is worthy objective because: 1) A variety of sample preparation, geochemical methods, and scientific best-practices can be imparted, while educating students about Antarctica’s geological configuration and role in the Earth climate system. 2) Individual projects that are narrowly defined can readily scaffold into collaborative science at the time of data synthesis and interpretation. 3) There is a high likelihood of scientific discovery that contributes to grant objectives. 4) Enrolled students will experience ambiguity and instrumentation setbacks alongside their faculty and instructors, and will likely have an opportunity to withstand/overcome challenges in a manner that trains students in complex problem solving and imparts resilience (St John et al., 2019). Based on our experiences, we consider CUREs as a means to create more inclusive and equitable spaces for learning to do research, and a basis for a broadening future WAIS community. Our groups have yet to assess student learning gains and STEM entry in a robust way, but we can report that two presenters at WAIS 2022 came from our 2021 CURE, and four polar science graduate researchers gained experience via CURE teaching. Data obtained by CURE students is contributing to our NSF projects’ aims to obtain isotope, age, and petrogenetic criteria with bearing on the subglacial bedrock geology, tectonic and landscape evolution, and ice sheet history of MBL. Cited and recommended works: Cascella & Jez, 2018, doi: 10.1021/acs.jchemed.7b00705 Gentile et al., 2017, doi: 10.17226/24622 Shanahan et al. 2022, https://www.cur.org/assets/1/23/01-01_TOC_SPUR_Winter21.pdf Shortlidge & Brownell, 2016, doi: 10.1128/jmbe.v17i3.1103 St. John et al. 2019, EOS, doi: 10.1029/2019EO127285. 
    more » « less
  4. Abstract Background

    STEM instructors who leverage student thinking can positively influence student outcomes and build their own teaching expertise. Leveraging student thinking involves using the substance of student thinking to inform instruction. The ways in which instructors leverage student thinking in undergraduate STEM contexts, and what enables them to do so effectively, remains largely unexplored. We investigated how undergraduate STEM faculty leverage student thinking in their teaching, focusing on faculty who engage students in work during class.

    Results

    From analyzing interviews and video of a class lesson for eight undergraduate STEM instructors, we identified a group of instructors who exhibited high levels of leveraging student thinking (high-leveragers) and a group of instructors who exhibited low levels of leveraging student thinking (low-leveragers). High-leveragers behaved as if student thinking was central to their instruction. We saw this in how they accessed student thinking, worked to interpret it, and responded in the moment and after class. High-leveragers spent about twice as much class time getting access to detailed information about student thinking compared to low-leveragers. High-leveragers then altered instructional plans from lesson to lesson and during a lesson based on their interpretation of student thinking. Critically, high-leveragers also drew on much more extensive knowledge of student thinking, a component of pedagogical content knowledge, than did low-leveragers. High-leveragers used knowledge of student thinking to create access to more substantive student thinking, shape real-time interpretations, and inform how and when to respond. In contrast, low-leveragers accessed student thinking less frequently, interpreted student thinking superficially or not at all, and never discussed adjusting the content or problems for the following lesson.

    Conclusions

    This study revealed that not all undergraduate STEM instructors who actively engage students in work during class are also leveraging student thinking. In other words, not all student-centered instruction is student-thinking-centered instruction. We discuss possible explanations for why some STEM instructors are leveraging student thinking and others are not. In order to realize the benefits of student-centered instruction for undergraduates, we may need to support undergraduate STEM instructors in learning how to learn from their teaching experiences by leveraging student thinking.

     
    more » « less
  5. Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate the Concept Warehouse, a technological innovation designed to foster concept-based active learning, into Mechanical Engineering (ME) and to study student learning with this tool in five diverse institutional settings. The Concept Warehouse (CW) is a web-based instructional tool that we developed for Chemical Engineering (ChE) faculty. It houses over 3,500 ConcepTests, which are short questions that can rapidly be deployed to engage students in concept-oriented thinking and/or to assess students’ conceptual knowledge, along with more extensive concept-based active learning tools. The CW has grown rapidly during this project and now has over 1,600 faculty accounts and over 37,000 student users. New ConcepTests were created during the current reporting period; the current numbers of questions for Statics, Dynamics, and Mechanics of Materials are 342, 410, and 41, respectively. A detailed review process is in progress, and will continue through the no-cost extension year, to refine question clarity and to identify types of new questions to fill gaps in content coverage. There have been 497 new faculty accounts created after June 30, 2018, and 3,035 unique students have answered these mechanics questions in the CW. We continue to analyze instructor interviews, focusing on 11 cases, all of whom participated in the CW Community of Practice (CoP). For six participants, we were able to compare use of the CW both before and after participating in professional development activities (workshops and/or a community or practice). Interview results have been coded and are currently being analyzed. To examine student learning, we recruited faculty to participate in deploying four common questions in both statics and dynamics. In statics, each instructor agreed to deploy the same four questions (one each for Rigid Body Equilibrium, Trusses, Frames, and Friction) among their overall deployments of the CW. In addition to answering the question, students were also asked to provide a written explanation to explain their reasoning, to rate the confidence of their answers, and to rate the degree to which the questions were clear and promoted deep thinking. The analysis to date has resulted in a Work-In-Progress paper presented at ASEE 2022, reporting a cross-case comparison of two instructors and a Work-In-Progress paper to be presented at ASEE 2023 analyzing students’ metacognitive reflections of concept questions. 
    more » « less