skip to main content


Title: Factors that influence STEM faculty use of evidence-based instructional practices: An ecological model
Traditional teaching practices in undergraduate science, technology, engineering, and mathematics (STEM) courses have failed to support student success, causing many students to leave STEM fields and disproportionately affecting women and students of color. Although much is known about effective STEM teaching practices, many faculty continue to adhere to traditional methods, such as lecture. In this study, we investigated the factors that affect STEM faculty members’ instructional decisions about evidence-based instructional practices (EBIPs). We performed a qualitative analysis of semi-structured interviews with faculty members from the Colleges of Physical and Mathematical Sciences, Life Sciences, and Engineering who took part in a professional development program to support the use of EBIPs by STEM faculty at the university. We used an ecological model to guide our investigation and frame the results. Faculty identified a variety of personal, social, and contextual factors that influenced their instructional decision-making. Personal factors included attitudes, beliefs, and self-efficacy. Social factors included the influence of students, colleagues, and administration. Contextual factors included resources, time, and student characteristics. These factors interact with each other in meaningful ways that highlight the hyper-local social contexts that exist within departments and sub-department cultures, the importance of positive feedback from students and colleagues when implementing EBIPs, and the need for support from the administration for faculty who are in the process of changing their teaching.  more » « less
Award ID(s):
1712056
NSF-PAR ID:
10437902
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Dalby, Andrew R.
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0281290
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supporting changes in undergraduate science, technology, engineering, and mathematics (STEM) instruction requires an understanding of the relationship between STEM instructors' conceptions and practices. In this study, the authors used the Teacher‐Centered Systematic Reform (TCSR) model as a framework to understand how instructors' conceptions are related to their instructional practices. This multiple methods study included interviews and classroom observations of 22 STEM instructors. We used qualitative methods to describe instructors' conceptions of how students learn and quantitative methods, including a hierarchical cluster analysis, to analyze the types of relationships that exist between their conceptions and practices. Results indicated instructors had a wide range of conceptions that exist along a continuum from teacher‐centered to student‐centered. While many faculty members perceived student‐centered practices as valuable, they conceptualized these practices in different ways. Instructors implemented a wide range of instructional practices, and these practices varied independently of conceptions. We identified three distinct clusters of participants based on the relationships between instructors' conceptions and practices: congruent lecturers, congruent active learning facilitators, and incongruent lecturers. In the first two clusters, instructors' conceptions were aligned with their instructional practices. However, incongruent lecturers thought that students learn through active learning approaches but primarily lectured in their courses. Instructors in this group described several personal and contextual factors that influenced the relationship between their conceptions and practices. The results include an in‐depth portrayal of one participant in each cluster. We found that student‐centered conceptions may be necessary but are not sufficient for instructors to implement active learning. Implications focus on instructional and institutional change efforts. To promote instructional change most effectively, it is important to address each component of the TCSR model, including personal and contextual factors. A focus on conceptions and practices alone may not sufficiently support faculty members in overcoming barriers that limit active learning instruction.

     
    more » « less
  2. Abstract Background

    Many institutional and departmentally focused change efforts have sought to improve teaching in STEM through the promotion of evidence-based instructional practices (EBIPs). Even with these efforts, EBIPs have not become the predominant mode of teaching in many STEM departments. To better understand institutional change efforts and the barriers to EBIP implementation, we developed the Cooperative Adoption Factors Instrument (CAFI) to probe faculty member characteristics beyond demographic attributes at the individual level. The CAFI probes multiple constructs related to institutional change including perceptions of the degree of mutual advantage of taking an action (strategic complements), trust and interconnectedness among colleagues (interdependence), and institutional attitudes toward teaching (climate).

    Results

    From data collected across five STEM fields at three large public research universities, we show that the CAFI has evidence of internal structure validity based on exploratory and confirmatory factor analysis. The scales have low correlations with each other and show significant variation among our sampled universities as demonstrated by ANOVA. We further demonstrate a relationship between the strategic complements and climate factors with EBIP adoption through use of a regression analysis. In addition to these factors, we also find that indegree, a measure of opinion leadership, correlates with EBIP adoption.

    Conclusions

    The CAFI uses the CACAO model of change to link the intended outcome of EBIP adoption with perception of EBIPs as mutually reinforcing (strategic complements), perception of faculty having their fates intertwined (interdependence), and perception of institutional readiness for change (climate). Our work has established that the CAFI is sensitive enough to pick up on differences between three relatively similar institutions and captures significant relationships with EBIP adoption. Our results suggest that the CAFI is likely to be a suitable tool to probe institutional change efforts, both for change agents who wish to characterize the local conditions on their respective campuses to support effective planning for a change initiative and for researchers who seek to follow the progression of a change initiative. While these initial findings are very promising, we also recommend that CAFI be administered in different types of institutions to examine the degree to which the observed relationships hold true across contexts.

     
    more » « less
  3. Abstract Background

    An instructor’s conceptions of teaching and learning contribute to the establishment of learning environments that may benefit or hinder student learning. Previous studies have defined the continuum of teaching and learning conceptions, ranging from limited to complete, as well as the instructional practices that they help to inform (instructor-centered to student-centered), and the corresponding learning environments that these conceptions and practices establish, ranging from traditional to student-centered. Using the case of one STEM department at a research-intensive, minority serving institution, we explored faculty’s conceptions of teaching and learning and their resulting instructional practices, as well as uncovered their perspectives on the intradepartmental faculty interactions related to teaching. The study participants were drawn from both teaching-focused (called Professors of Teaching, PoTs) and traditional research (whom we call Research Professors, RPs) tenure-track faculty lines to identify whether differences existed amongst these two populations. We used interviews to explore faculty conceptions and analyzed syllabi to unveil how these conceptions shape instructional environments.

    Results

    Overall, PoTs exhibited complete conceptions of teaching and learning that emphasized student ownership of learning, whereas RPs possessed intermediate conceptions that focused more on transmitting knowledge and helping students prepare for subsequent courses. While both PoTs and RPs self-reported the use of active learning pedagogies, RPs were more likely to also highlight the importance of traditional lecture. The syllabi analysis revealed that PoTs enacted more student-centered practices in their classrooms compared to RPs. PoTs appeared to be more intentionally available to support students outside of class and encouraged student collaboration, while RPs focused more on the timeliness of assessments and enforcing more instructor-centered approaches in their courses. Finally, the data indicated that RPs recognized PoTs as individuals who were influential on their own teaching conceptions and practices.

    Conclusions

    Our findings suggest that departments should consider leveraging instructional experts who also possess a disciplinary background (PoTs) to improve their educational programs, both due to their student-centered impacts on the classroom environment and positive influence on their colleagues (RPs). This work also highlights the need for higher education institutions to offer appropriate professional development resources to enable faculty to reflect on their teaching and learning conceptions, aid in their pedagogical evolution, and guide the implementation of these conceptions into practice.

     
    more » « less
  4. Abstract Background

    There has been a growing interest in characterizing factors influencing teaching decisions of science, technology, engineering, and mathematics (STEM) instructors in order to address the slow uptake of evidence-based instructional practices (EBIPs). This growing body of research has identified contextual factors (e.g., classroom layout, departmental norms) as primary influencers of STEM instructors’ decision to implement EBIPs in their courses. However, models of influences on instructional practices indicate that context is only one type of factor to consider. Other factors fall at the individual level such as instructors’ past teaching experience and their views on learning. Few studies have been able to explore in depth the role of these individual factors on the adoption of EBIPs since it is challenging to control for contextual features when studying current instructors. Moreover, most studies exploring adoption of EBIPs do not take into account the distinctive features of each EBIP and the influence these features may have on the decision to adopt the EBIP. Rather, studies typically explore barriers and drivers to the implementation of EBIPs in general. In this study, we address these gaps in the literature by conducting an in-depth exploration of individual factors and EBIPs’ features that influence nine future STEM instructors’ decisions to incorporate a selected set of EBIPs in their teaching.

    Results

    We had hypothesized that the future instructors would have different reasoning to support their decisions to adopt or not Peer Instruction and the 5E Model as the two EBIPs have distinctive features. However, our results demonstrate that instructors based their decisions on similar factors. In particular, we found that the main drivers of their decisions were (1) the compatibility of the EBIP with their past experiences as students and instructors as well as teaching values and (2) experiences provided in the pedagogical course they were enrolled in.

    Conclusions

    This study demonstrates that when considering the adoption of EBIPs, there is a need to look beyond solely contextual influences on instructor’s decisions to innovate in their courses and explore individual factors. Moreover, professional development programs should leverage their participants past experiences as students and instructors and provide an opportunity for instructors to experience new EBIPs as learners and instructors.

     
    more » « less
  5. A 2019 report from the National Academies on Minority Serving Institutions (MSIs) concluded that MSIs need to change their culture to successfully serve students with marginalized racial and/or ethnic identities. The report recommends institutional responsiveness to meet students “where they are,” metaphorically, creating supportive campus environments and providing tailored academic and social support structures. In recent years, the faculty, staff, and administrators at California State University, Los Angeles have made significant efforts to enhance student success through multiple initiatives including a summer bridge program, first-year in engineering program, etc. However, it has become clear that more profound changes are needed to create a culture that meets students “where they are.” In 2020, we were awarded NSF support for Eco-STEM, an initiative designed to change a system that demands "college-ready" students into one that is "student-ready." Aimed at shifting the deficit mindset prevailing in engineering education, the Eco-STEM project embraces an asset-based ecosystem model that thinks of education as cultivation, and ideas as seeds we are planting, rather than a system of standards and quality checks. This significant paradigm and culture transformation is accomplished through: 1) The Eco-STEM Faculty Fellows’ Community of Practice (CoP), which employs critically reflective dialogue[ ][ ] to enhance the learning environment using asset-based learner-centered instructional approaches; 2) A Leadership CoP with department chairs and program directors that guides cultural change at the department/program level; 3) A Facilitators’ CoP that prepares facilitators to lead, sustain, update, and expand the Faculty and Leadership CoPs; 4) Reform of the teaching evaluation system to sustain the cultural changes. This paper presents the progress and preliminary findings of the Eco-STEM project. During the first project year, the project team formulated the curriculum for the Faculty CoP with a focus on inclusive pedagogy, community cultural wealth, and community building, developed a classroom peer observation tool to provide formative data for teaching reflection, and designed research inquiry tools. The latter investigates the following research questions: 1) To what extent do the Eco-STEM CoPs effectively shift the mental models of participants from a factory-like model to an ecosystem model of education? 2) To what extent does this shift support an emphasis on the assets of our students, faculty, and staff members and, in turn, allow for enhanced motivation, excellence and success? 3) To what extent do new faculty assessment tools designed to provide feedback that reflects ecosystem-centric principles and values allow for individuals within the system to thrive? In Fall 2021, the first cohort of Eco-STEM Faculty Fellows were recruited, and rich conversations and in-depth reflections in our CoP meetings indicated Fellows’ positive responses to both the CoP curriculum and facilitation practices. This paper offers a work-in-progress introduction to the Eco-STEM project, including the Faculty CoP, the classroom peer observation tool, and the proposed research instruments. We hope this work will cultivate broader conversations within the engineering education research community about cultural change in engineering education and methods towards its implementation. 
    more » « less