 Award ID(s):
 1931524
 NSFPAR ID:
 10401273
 Date Published:
 Journal Name:
 Physics of Fluids
 Volume:
 34
 Issue:
 6
 ISSN:
 10706631
 Page Range / eLocation ID:
 064105
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Brehm, Christop ; Pandya, Shishir (Ed.)Paraffin wax is a prominent solid fuel for hybrid rockets. The atomization process of the paraffin wax fuel into he hybrid rocket combustion involves the droplets pinching off from the fuel surface. Therefore, droplet formation and pinchoff dynam ics is analyzed using a onedimensional axisymmetric approximation to understand droplet size distribution and pinchoff time. A mixed finite element formulation is used to solve the numerical problem. The computational algorithm uses adaptive mesh refinement to capture singularity and runs selfconsistently to calculate droplet elongation. The code is verified using the Method of Manufactured Solution (MMS) and validated against laboratory experiments. Moreover, paraffin wax simulations are explored for varying inlet radius and it is found that the droplet size increases very slightly with the increasing inlet radius. Also, the pinchoff time increases up to a point where it starts to decrease as we increase the inlet radius. This behavior leads to a conjecture for the theoretical maximum radius that the droplet approaches as the inlet radius increases, which is a motivation for the future work.more » « less

Abstract In Jayanti and Trivisa (2022 J. Math. Fluid Mech. 24 46), the authors proved the existence of localintime weak solutions to a model of superfluidity. The system of governing equations was derived in Pitaevskii (1959 Sov. Phys. JETP 8 282–287) and couples the nonlinear Schrödinger equation and the Navier–Stokes equations. In this article, we prove a weak–strong type uniqueness theorem for these weak solutions. Only some of their regularity properties are used, allowing room for improved existence theorems in the future, with compatible uniqueness results.more » « less

Whether the 3D incompressible Navier–Stokes equations can develop a finite time sin gularity from smooth initial data is one of the most challenging problems in nonlinear PDEs. In this paper, we present some new numerical evidence that the incompress ible axisymmetric Navier–Stokes equations with smooth initial data of finite energy seem to develop potentially singular behavior at the origin. This potentially singular behavior is induced by a potential finite time singularity of the 3D Euler equations that we reported in a companion paper published in the same issue, see also Hou (Poten tial singularity of the 3D Euler equations in the interior domain. arXiv:2107.05870 [math.AP], 2021). We present numerical evidence that the 3D Navier–Stokes equa tions develop nearly selfsimilar singular scaling properties with maximum vorticity increased by a factor of 107. We have applied several blowup criteria to study the potentially singular behavior of the Navier–Stokes equations. The Beale–Kato–Majda blowup criterion and the blowup criteria based on the growth of enstrophy and neg ative pressure seem to imply that the Navier–Stokes equations using our initial data develop a potential finite time singularity. We have also examined the Ladyzhenskaya– Prodi–Serrin regularity criteria (Kiselev and Ladyzhenskaya in Izv Akad Nauk SSSR Ser Mat 21(5):655–690, 1957; Prodi in Ann Math Pura Appl 4(48):173–182, 1959; Serrin in Arch Ration Mech Anal 9:187–191, 1962) that are based on the growth rate of Lqt Lxp norm of the velocity with 3/p + 2/q ≤ 1. Our numerical results for the cases of (p,q) = (4,8), (6,4), (9,3) and (p,q) = (∞,2) provide strong evidence for the potentially singular behavior of the Navier–Stokes equations. The critical case of (p,q) = (3,∞) is more difficult to verify numerically due to the extremely slow growth rate in the L3 norm of the velocity field and the significant contribution from the far field where we have a relatively coarse grid. Our numerical study shows that while the global L3 norm of the velocity grows very slowly, the localized version of the L 3 norm of the velocity experiences rapid dynamic growth relative to the localized L 3 norm of the initial velocity. This provides further evidence for the potentially singular behavior of the Navier–Stokes equations.more » « less

Abstract We study the singularity formation of a quasiexact 1D model proposed by Hou and Li (2008
Commun. Pure Appl. Math. 61 661–97). This model is based on an approximation of the axisymmetric Navier–Stokes equations in ther direction. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier–Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear inr . This model shares many intrinsic properties similar to those of the 3D Euler and Navier–Stokes equations. It captures the competition between advection and vortex stretching as in the 1D De Gregorio (De Gregorio 1990J. Stat. Phys. 59 1251–63; De Gregorio 1996Math. Methods Appl. Sci. 19 1233–55) model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a selfsimilar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the lowfrequency Fourier modes and extract damping in leading order estimates for the highfrequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of highorder Sobolev norms. 
We investigate the effect of constantvorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas ( A Unified Approach to Boundary Value Problems , 2008, SIAM), we derive a higherorder nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the meansurface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. ( Phys. Fluids , vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for planewave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of meansurface mass transport. These results provide a possible explanation for the measurements reported in Smith ( J. Phys. Oceanogr. , vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. ( J. Phys. Oceanogr. , vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.more » « less