skip to main content


Title: A Generalized Information-Theoretic Framework for the Emergence of Hierarchical Abstractions in Resource-Limited Systems
In this paper, a generalized information-theoretic framework for the emergence of multi-resolution hierarchical tree abstractions is developed. By leveraging ideas from information-theoretic signal encoding with side information, this paper develops a tree search problem which considers the generation of multi-resolution tree abstractions when there are multiple sources of relevant and irrelevant, or possibly confidential, information. We rigorously formulate an information-theoretic driven tree abstraction problem and discuss its connections with information-theoretic privacy and resource-limited systems. The problem structure is investigated and a novel algorithm, called G-tree search, is proposed. The proposed algorithm is analyzed and a number of theoretical results are established, including the optimally of the G-tree search algorithm. To demonstrate the utility of the proposed framework, we apply our method to a real-world example and provide a discussion of the results from the viewpoint of designing hierarchical abstractions for autonomous systems.  more » « less
Award ID(s):
1849130
NSF-PAR ID:
10401281
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
6
ISSN:
1099-4300
Page Range / eLocation ID:
809
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the problem of estimating the level set of a black-box function from noisy and expensive evaluation queries is considered. A new algorithm for this problem in the Bayesian framework with a Gaussian Process (GP) prior is proposed. The proposed algorithm employs a hierarchical sequence of partitions to explore different regions of the search space at varying levels of detail depending upon their proximity to the level set boundary. It is shown that this approach results in the algorithm having a low complexity implementation whose computational cost is significantly smaller than the existing algorithms for higher dimensional search space \X. Furthermore, high probability bounds on a measure of discrepancy between the estimated level set and the true level set for the the proposed algorithm are obtained, which are shown to be strictly better than the existing guarantees for a large class of GPs.In the process, a tighter characterization of the information gain of the proposed algorithm is obtained which takes into account the structured nature of the evaluation points. This approach improves upon the existing technique of bounding the information gain with maximum information gain. 
    more » « less
  2. Pelachaud, Catherine ; Taylor, Matthew E. ; Mascardi, Viviana (Ed.)
    This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. This allows us to compute abstract states and actions for new environments automatically using the critical regions predicted by a deep neural network with an auto-generated robot-specific architecture. We show that the learned abstractions can be used with a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) our learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning, abstractions, and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training. 
    more » « less
  3. This paper addresses the problem of learning abstractions that boost robot planning performance while providing strong guarantees of reliability. Although state-of-the-art hierarchical robot planning algorithms allow robots to efficiently compute long-horizon motion plans for achieving user desired tasks, these methods typically rely upon environment-dependent state and action abstractions that need to be hand-designed by experts. We present a new approach for bootstrapping the entire hierarchical planning process. This allows us to compute abstract states and actions for new environments automatically using the critical regions predicted by a deep neural network with an auto-generated robot-specific architecture. We show that the learned abstractions can be used with a novel multi-source bi-directional hierarchical robot planning algorithm that is sound and probabilistically complete. An extensive empirical evaluation on twenty different settings using holonomic and non-holonomic robots shows that (a) our learned abstractions provide the information necessary for efficient multi-source hierarchical planning; and that (b) this approach of learning, abstractions, and planning outperforms state-of-the-art baselines by nearly a factor of ten in terms of planning time on test environments not seen during training. 
    more » « less
  4. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems. 
    more » « less
  5. Searching for parking has been a problem faced by many drivers, especially in urban areas. With an increasing public demand for parking information and services, as well as the proliferation of advanced smartphones, a range of smartphone-based parking management services began to emerge. Funded by the National Science Foundation, our research aims to explore the potential of smartphone-based parking management services as a solution to parking problems, to deepen our understandings of travelers’ parking behaviors, and to further advance the analytical foundations and methodologies for modeling and assessing parking solutions. This paper summarizes progress and results from our research projects on smartphone-based parking management, including parking availability information prediction, parking searching strategy, the development of a mobile parking application, and our next steps to learn and discover new knowledge from its deployment. To predict future parking occupancy, we proposed a practical framework that integrates machine-learning techniques with a model-based core approach that explicitly models the stochastic parking process. The framework is able to predict future parking occupancy from historical occupancy data alone, and can handle complex arrival and departure patterns in real-world case studies, including special event. With the predicted probabilistic availability information, a cost-minimizing parking searching strategy is developed. The parking searching problem for an individual user is a stochastic Markov decision process and is formalized as a dynamic programming problem. The cost-minimizing parking searching strategy is solved by value iteration. Our simulated experiments showed that cost-minimizing strategy has the lowest expected cost but tends to direct a user to visit more parking facilities compared with two greedy strategies. Currently, we are working on implementing the predictive framework and the searching algorithm in a mobile phone application. We are working closely with Arizona State University (ASU) Parking and Transit Services to implement a three-stage pilot deployment of the prototype application around the ASU main campus. In the first stage, our application will provide real-time information and we will incorporate availability prediction and searching guidance in the second and third stages. Once the mobile application is deployed, it will provide unique opportunities to collect data on parking search behaviors, discover emerging scenarios of smartphone-based parking management services, and assess the impacts of such systems. 
    more » « less