Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘highquality’ information for optimizing the control performance under communication constraints. We show that there exist a sepatation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program.more » « less
-
This work studies the behaviors of two large-population teams competing in a discrete environment. The team-level interactions are modeled as a zero-sum game while the agent dynamics within each team is formulated as a collaborative mean-field team problem. Drawing inspiration from the mean-field literature, we first approximate the large-population team game with its infinite-population limit. Subsequently, we construct a fictitious centralized system and transform the infinite-population game to an equivalent zero-sum game between two coordinators. Via a novel reachability analysis, we study the optimality of coordination strategies, which induce decentralized strategies under the original information structure. The optimality of the resulting strategies is established in the original finite-population game, and the theoretical guarantees are verified by numerical examples.more » « less
-
In networked control systems, the sensory signals are often quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider the problem of joint optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found by solving a linear program---both of which can be solved offline.more » « less
-
In this paper, a generalized information-theoretic framework for the emergence of multi-resolution hierarchical tree abstractions is developed. By leveraging ideas from information-theoretic signal encoding with side information, this paper develops a tree search problem which considers the generation of multi-resolution tree abstractions when there are multiple sources of relevant and irrelevant, or possibly confidential, information. We rigorously formulate an information-theoretic driven tree abstraction problem and discuss its connections with information-theoretic privacy and resource-limited systems. The problem structure is investigated and a novel algorithm, called G-tree search, is proposed. The proposed algorithm is analyzed and a number of theoretical results are established, including the optimally of the G-tree search algorithm. To demonstrate the utility of the proposed framework, we apply our method to a real-world example and provide a discussion of the results from the viewpoint of designing hierarchical abstractions for autonomous systems.more » « less
-
We present a framework that incorporates the principle of bounded rationality into dynamic stochastic pursuit-evasion games. The solution of a stochastic game is generally characterized by its (Nash) equilibria in feedback form, whose calculation may require extensive computational resources. In this paper, the agents are modeled as bounded rational entities with limited computational capabilities. We illustrate the proposed framework by applying it to a pursuit-evasion game between two aerial vehicles in a stochastic wind field. We show how such a game may be discretized and properly analyzed by casting it as an iterative sequence of finite-state Markov Decision Processes (MDPs). Leveraging tools and algorithms from the cognitive hierarchy theory (“level-k thinking”) we compute the solution of the ensuing discrete game, while taking into consideration the rationality level of each agent. We also present an online algorithm for each agent to infer its opponent's rationality level.more » « less
An official website of the United States government
