skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigation of oscillations in katabatic Prandtl slope flows
Abstract Dynamically unstable katabatic Prandtl slope flows are studied via numerical simulations and spectral analysis. Results confirm the presence of aperiodic temporal and spatial oscillations in the flow fields due to the emergence and propagation of flow instabilities. Dampeden masseoscillations are observed to dominate the initial oscillatory stage of laminar katabatic slope flows. Stationary longitudinal rolls, which are dominant at shallow slopes, are observed to meander with increasing stratification perturbation parameter and the average distance between the rolls exhibits a strong dependence on slope inclination for slope angles less than . At much steeper slopes, traveling slope waves emerge and they are transported at the mean jet velocity. Both types of instability rolls coexist for certain combinations of dimensionless parameters, forming intricate structures that break into smaller eddies as the flow becomes more dynamically unstable. In the dynamically unstable nonturbulent regime,en masseoscillations are insignificant, but their normalised frequency can be used to discern the type of flow instability.  more » « less
Award ID(s):
1936445
PAR ID:
10401351
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
149
Issue:
750
ISSN:
0035-9009
Page Range / eLocation ID:
p. 247-261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $$\alpha =3^{\circ }$$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less
  2. In the Prandtl model for anabatic slope flows, a uniform positive buoyancy flux at the surface drives an upslope flow against a stable background stratification. In the present study, we conduct linear stability analysis of the anabatic slope flow under this model and contrast it against the katabatic case as presented in Xiao & Senocak ( J. Fluid Mech. , vol. 865, 2019, R2). We show that the buoyancy component normal to the sloped surface is responsible for the emergence of stationary longitudinal rolls, whereas a generalised Kelvin–Helmholtz (KH) type of mechanism consisting of shear instability modulated by buoyancy results in a streamwise-travelling mode. In the anabatic case, for slope angles larger than $$9^{\circ }$$ to the horizontal, the travelling KH mode is dominant whereas, at lower inclination angles, the formation of the stationary vortex instability is favoured. The same dynamics holds qualitatively for the katabatic case, but the mode transition appears at slope angles of approximately $$62^{\circ }$$ . For a fixed slope angle and Prandtl number, we demonstrate through asymptotic analysis of linear growth rates that it is possible to devise a classification scheme that demarcates the stability of Prandtl slope flows into distinct regimes based on the dimensionless stratification perturbation number. We verify the existence of the instability modes with the help of direct numerical simulations, and observe close agreements between simulation results and predictions of linear analysis. For slope angle values in the vicinity of the junction point in the instability map, both longitudinal rolls and travelling waves coexist simultaneously and form complex flow structures. 
    more » « less
  3. Abstract This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in coastal flows where depth variations and bottom drag are important. The focus is on the effects of nongeostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability properties against numerical model calculations, for experiments designed to isolate the individual effects and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the Eady–Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to favor converting energy back to the mean, thus having limited utility over steep slopes. 
    more » « less
  4. ABSTRACT Collisional self-interactions occurring in protostellar jets give rise to strong shocks, the structure of which can be affected by radiative cooling within the flow. To study such colliding flows, we use the AstroBEAR AMR code to conduct hydrodynamic simulations in both one and three dimensions with a power-law cooling function. The characteristic length and time-scales for cooling are temperature dependent and thus may vary as shocked gas cools. When the cooling length decreases sufficiently and rapidly, the system becomes unstable to the radiative shock instability, which produces oscillations in the position of the shock front; these oscillations can be seen in both the one- and three-dimensional cases. Our simulations show no evidence of the density clumping characteristic of a thermal instability, even when the cooling function meets the expected criteria. In the three-dimensional case, the nonlinear thin shell instability (NTSI) is found to dominate when the cooling length is sufficiently small. When the flows are subjected to the radiative shock instability, oscillations in the size of the cooling region allow NTSI to occur at larger cooling lengths, though larger cooling lengths delay the onset of NTSI by increasing the oscillation period. 
    more » « less
  5. The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $$Ra\to \infty$$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $$Nu \sim Ra^{1/3}$$ or ‘ultimate’ $$Nu \sim Ra^{1/2}$$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $$10^{14}$$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $$Ra\to \infty$$ , it cannot achieve the ultimate scaling. 
    more » « less