skip to main content

Title: Investigation of oscillations in katabatic Prandtl slope flows

Dynamically unstable katabatic Prandtl slope flows are studied via numerical simulations and spectral analysis. Results confirm the presence of aperiodic temporal and spatial oscillations in the flow fields due to the emergence and propagation of flow instabilities. Dampeden masseoscillations are observed to dominate the initial oscillatory stage of laminar katabatic slope flows. Stationary longitudinal rolls, which are dominant at shallow slopes, are observed to meander with increasing stratification perturbation parameter and the average distance between the rolls exhibits a strong dependence on slope inclination for slope angles less than . At much steeper slopes, traveling slope waves emerge and they are transported at the mean jet velocity. Both types of instability rolls coexist for certain combinations of dimensionless parameters, forming intricate structures that break into smaller eddies as the flow becomes more dynamically unstable. In the dynamically unstable nonturbulent regime,en masseoscillations are insignificant, but their normalised frequency can be used to discern the type of flow instability.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Page Range / eLocation ID:
p. 247-261
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stationary longitudinal vortical rolls emerge in katabatic and anabatic Prandtl slope flows at shallow slopes as a result of an instability when the imposed surface buoyancy flux relative to the background stratification is sufficiently large. Here, we identify the self-pairing of these longitudinal rolls as a unique flow structure. The topology of the counter-rotating vortex pair bears a striking resemblance to speaker-wires and their interaction with each other is a precursor to further destabilization and breakdown of the flow field into smaller structures. On its own, a speaker-wire vortex retains its unique topology without any vortex reconnection or breakup. For a fixed slope angle $\alpha =3^{\circ }$ and at a constant Prandtl number, we analyse the saturated state of speaker-wire vortices and perform a bi-global linear stability analysis based on their stationary state. We establish the existence of both fundamental and subharmonic secondary instabilities depending on the circulation and transverse wavelength of the base state of speaker-wire vortices. The dominance of subharmonic modes relative to the fundamental mode helps to explain the relative stability of a single vortex pair compared to the vortex dynamics in the presence of two or an even number of pairs. These instability modes are essential for the bending and merging of multiple speaker-wire vortices, which break up and lead to more dynamically unstable states, eventually paving the way for transition towards turbulence. This process is demonstrated via three-dimensional flow simulations with which we are able to track the nonlinear temporal evolution of these instabilities. 
    more » « less
  2. In the Prandtl model for anabatic slope flows, a uniform positive buoyancy flux at the surface drives an upslope flow against a stable background stratification. In the present study, we conduct linear stability analysis of the anabatic slope flow under this model and contrast it against the katabatic case as presented in Xiao & Senocak ( J. Fluid Mech. , vol. 865, 2019, R2). We show that the buoyancy component normal to the sloped surface is responsible for the emergence of stationary longitudinal rolls, whereas a generalised Kelvin–Helmholtz (KH) type of mechanism consisting of shear instability modulated by buoyancy results in a streamwise-travelling mode. In the anabatic case, for slope angles larger than $9^{\circ }$ to the horizontal, the travelling KH mode is dominant whereas, at lower inclination angles, the formation of the stationary vortex instability is favoured. The same dynamics holds qualitatively for the katabatic case, but the mode transition appears at slope angles of approximately $62^{\circ }$ . For a fixed slope angle and Prandtl number, we demonstrate through asymptotic analysis of linear growth rates that it is possible to devise a classification scheme that demarcates the stability of Prandtl slope flows into distinct regimes based on the dimensionless stratification perturbation number. We verify the existence of the instability modes with the help of direct numerical simulations, and observe close agreements between simulation results and predictions of linear analysis. For slope angle values in the vicinity of the junction point in the instability map, both longitudinal rolls and travelling waves coexist simultaneously and form complex flow structures. 
    more » « less
  3. Abstract

    This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in coastal flows where depth variations and bottom drag are important. The focus is on the effects of nongeostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability properties against numerical model calculations, for experiments designed to isolate the individual effects and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the Eady–Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to favor converting energy back to the mean, thus having limited utility over steep slopes.

    more » « less
  4. Abstract

    Oceanic heat strongly influences the glaciers and ice shelves along West Antarctica. Prior studies show that the subsurface onshore heat flux from the Southern Ocean on the shelf occurs through deep, glacially carved channels. The mechanisms enabling the export of colder shelf waters to the open ocean, however, have not been determined. Here, we use ocean glider measurements collected near the mouth of Marguerite Trough (MT), west Antarctic Peninsula, to reveal shelf‐modified cold waters on the slope over a deep (2,700 m) offshore topographic bank. The shelf hydrographic sections show subsurface cold features (θ<=1.5 °C), and associated potential vorticity fields suggest a significant instability‐driven eddy field. Output from a high‐resolution numerical model reveals offshore export modulated by small (6 km), cold‐cored, cyclonic eddies preferentially generated along the slope and at the mouth of MT. While baroclinic and barotropic instabilities appear active in the surrounding open ocean, the former is suppressed along the steep shelf slopes, while the latter appears enhanced. Altimetry and model output reveal the mean slope flow splitting to form an offshore branch over the bank, which eventually forms a large (116 km wide) persistent lee eddy, and an onshore branch in MT. The offshore flow forms a pathway for the small cold‐cored eddies to move offshore, where they contribute significantly to cooling over the bank, including the large lee eddy. These results suggest eddy fluxes, and topographically modulated flows are key mechanisms for shelf water export along this shelf, just as they are for the shoreward warm water transport.

    more » « less
  5. Abstract

    Generating mechanisms and parameterizations for enhanced turbulence in the wake of a seamount in the path of the Kuroshio are investigated. Full-depth profiles of finescale temperature, salinity, horizontal velocity, and microscale thermal-variance dissipation rate up- and downstream of the ∼10-km-wide seamount were measured with EM-APEX profiling floats and ADCP moorings. Energetic turbulent kinetic energy dissipation ratesand diapycnal diffusivitiesabove the seamount flanks extend at least 20 km downstream. This extended turbulent wake length is inconsistent with isotropic turbulence, which is expected to decay in less than 100 m based on turbulence decay time ofN−1∼ 100 s and the 0.5 m s−1Kuroshio flow speed. Thus, the turbulent wake must be maintained by continuous replenishment which might arise from (i) nonlinear instability of a marginally unstable vortex wake, (ii) anisotropic stratified turbulence with expected downstream decay scales of 10–100 km, and/or (iii) lee-wave critical-layer trapping at the base of the Kuroshio. Three turbulence parameterizations operating on different scales, (i) finescale, (ii) large-eddy, and (iii) reduced-shear, are tested. Averageεvertical profiles are well reproduced by all three parameterizations. Vertical wavenumber spectra for shear and strain are saturated over 10–100 m vertical wavelengths comparable to water depth with spectral levels independent ofεand spectral slopes of −1, indicating that the wake flows are strongly nonlinear. In contrast, vertical divergence spectral levels increase withε.

    more » « less