skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon
ABSTRACT The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea . Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS 200 /IS 605 , IS 4 , and IS H3 families. Findings from this study are provided as an atlas in a public Web resource ( https://halodata.systemsbiology.net ). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas ( https://halodata.systemsbiology.net ).  more » « less
Award ID(s):
1920268 2105570
PAR ID:
10401393
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Medema, Marnix
Date Published:
Journal Name:
mSystems
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Albers, Sonja (Ed.)
    Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. InHalobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably,Hbt. salinarumdoes not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist,Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. InHar. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point inHbt. salinarum, activation ofppsAand repression ofpykA, is absent inHar. hispanica. Contrary to its role inHbt. salinarumand saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources inHar. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea. 
    more » « less
  2. Komeili, Arash (Ed.)
    ABSTRACT Histone proteins are found across diverse lineages of Archaea , many of which package DNA and form chromatin. However, previous research has led to the hypothesis that the histone-like proteins of high-salt-adapted archaea, or halophiles, function differently. The sole histone protein encoded by the model halophilic species Halobacterium salinarum , HpyA, is nonessential and expressed at levels too low to enable genome-wide DNA packaging. Instead, HpyA mediates the transcriptional response to salt stress. Here we compare the features of genome-wide binding of HpyA to those of HstA, the sole histone of another model halophile, Haloferax volcanii . hstA , like hpyA , is a nonessential gene. To better understand HpyA and HstA functions, protein-DNA binding data (chromatin immunoprecipitation sequencing [ChIP-seq]) of these halophilic histones are compared to publicly available ChIP-seq data from DNA binding proteins across all domains of life, including transcription factors (TFs), nucleoid-associated proteins (NAPs), and histones. These analyses demonstrate that HpyA and HstA bind the genome infrequently in discrete regions, which is similar to TFs but unlike NAPs, which bind a much larger genomic fraction. However, unlike TFs that typically bind in intergenic regions, HpyA and HstA binding sites are located in both coding and intergenic regions. The genome-wide dinucleotide periodicity known to facilitate histone binding was undetectable in the genomes of both species. Instead, TF-like and histone-like binding sequence preferences were detected for HstA and HpyA, respectively. Taken together, these data suggest that halophilic archaeal histones are unlikely to facilitate genome-wide chromatin formation and that their function defies categorization as a TF, NAP, or histone. IMPORTANCE Most cells in eukaryotic species—from yeast to humans—possess histone proteins that pack and unpack DNA in response to environmental cues. These essential proteins regulate genes necessary for important cellular processes, including development and stress protection. Although the histone fold domain originated in the domain of life Archaea , the function of archaeal histone-like proteins is not well understood relative to those of eukaryotes. We recently discovered that, unlike histones of eukaryotes, histones in hypersaline-adapted archaeal species do not package DNA and can act as transcription factors (TFs) to regulate stress response gene expression. However, the function of histones across species of hypersaline-adapted archaea still remains unclear. Here, we compare hypersaline histone function to a variety of DNA binding proteins across the tree of life, revealing histone-like behavior in some respects and specific transcriptional regulatory function in others. 
    more » « less
  3. Abstract Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt‐loving organismHaloferax volcaniiexhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related speciesHalobacterium salinarumby activating the expression of enzyme‐coding genes in the gluconeogenesis metabolic pathway. InHbt. salinarum, TrmB‐dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions inHfx. volcanii. The ∆trmBstrain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we nametrmBsuppressor, or TbsP (a.k.a. “tablespoon”). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild‐type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose‐dependent transcription ofgapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients inHfx. volcanii. 
    more » « less
  4. Wong, A (Ed.)
    Abstract Archaea are a major part of Earth’s microbiota and extremely diverse. Yet, we know very little about the process of mutation that drives such diversification. To expand beyond previous work with the moderate halophilic archaeal species Haloferax volcanii, we performed a mutation-accumulation experiment followed by whole-genome sequencing in the extremely halophilic archaeon Halobacterium salinarum. Although Hfx. volcanii and Hbt. salinarum have different salt requirements, both species have highly polyploid genomes and similar GC content. We accumulated mutations for an average of 1250 generations in 67 mutation accumulation lines of Hbt. salinarum, and revealed 84 single-base substitutions and 10 insertion-deletion mutations. The estimated base-substitution mutation rate of 3.99 × 10−10 per site per generation or 1.0 × 10−3 per genome per generation in Hbt. salinarum is similar to that reported for Hfx. volcanii (1.2 × 10−3 per genome per generation), but the genome-wide insertion-deletion rate and spectrum of mutations are somewhat dissimilar in these archaeal species. The spectra of spontaneous mutations were AT biased in both archaea, but they differed in significant ways that may be related to differences in the fidelity of DNA replication/repair mechanisms or a simple result of the different salt concentrations. 
    more » « less
  5. Abstract Data-Independent Acquisition (DIA) is a mass spectrometry-based method to reliably identify and reproducibly quantify large fractions of a target proteome. The peptide-centric data analysis strategy employed in DIA requiresa priorigenerated spectral assay libraries. Such assay libraries allow to extract quantitative data in a targeted approach and have been generated for human, mouse, zebrafish,E. coliand few other organisms. However, a spectral assay library for the extreme halophilic archaeonHalobacterium salinarumNRC-1, a model organism that contributed to several notable discoveries, is not publicly available yet. Here, we report a comprehensive spectral assay library to measure 2,563 of 2,646 annotatedH. salinarumNRC-1 proteins. We demonstrate the utility of this library by measuring global protein abundances over time under standard growth conditions. TheH. salinarumNRC-1 library includes 21,074 distinct peptides representing 97% of the predicted proteome and provides a new, valuable resource to confidently measure and quantify any protein of this archaeon. Data and spectral assay libraries are available via ProteomeXchange (PXD042770, PXD042774) and SWATHAtlas (SAL00312-SAL00319). 
    more » « less