On 27 May 2015, the Atmospheric Imaging Radar (AIR) collected high-temporal resolution radar observations of an EF-2 tornado near Canadian, Texas. The AIR is a mobile, X-band, imaging radar that uses digital beamforming to collect simultaneous RHI scans while steering mechanically in azimuth to obtain rapid-update weather data. During this deployment, 20°-by-80° (elevation × azimuth) sector volumes were collected every 5.5 s at ranges as close as 6 km. The AIR captured the late-mature and decaying stages of the tornado. Early in the deployment, the tornado had a radius of maximum winds (RMW) of 500 m and exhibited maximum Doppler velocities near 65 m s−1. This study documents the rapid changes associated with the dissipation stages of the tornado. A 10-s resolution time–height investigation of vortex tilt and differential velocity [Formula: see text] is presented and illustrates an instance of upward vortex intensification as well as downward tornado decay. Changes in tornado intensity over periods of less than 30 s coincided with rapid changes in tornado diameter. At least two small-scale vortices were observed being shed from the tornado during a brief weakening period. A persistent layer of vortex tilt was observed near the level of free convection, which separated two layers with contrasting modes of tornado decay. Finally, the vertical cross correlation of vortex intensity reveals that apart from the brief instances of upward vortex intensification and downward decay, tornado intensity was highly correlated throughout the observation period.
more »
« less
Soil Moisture Observations From Shortwave Infrared Channels Reveal Tornado Tracks: A Case in 10–11 December 2021 Tornado Outbreak
Abstract Satellite‐based post‐tornado assessments have been widely used for the detection of tornado tracks, which heavily relies on the identification of vegetation changes through observations at visible and near‐infrared channels. During the deadly 10–11 December 2021 tornado outbreak, a series of violent tornadoes first touched down over northeastern Arkansas, an area dominated by cropland with rare vegetation coverage in winter. Through the examination of Moderate Resolution Imaging Spectroradiometer multi‐spectral observations, this study reveals significant scars on shortwave infrared channels over this region, but none are captured by visible and near‐infrared channels. The dominant soil type is aquert (one of vertisols), whose high clay content well preserves the severe changes in soil structure during the tornado passage, when the topmost soil layer was removed and underlying soil with higher moisture content was exposed to the air. This study suggests a quick post‐tornado assessment method over less vegetated area by using shortwave infrared channels.
more »
« less
- PAR ID:
- 10401666
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 6
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Southeastern United States frequently experience tornadoes, necessitating rapid response and recovery efforts by state and federal agencies. Accurate information about the extent and severity of tornado-induced damage, especially debris volume and locations, is crucial for these efforts. This study, therefore, focuses on post-tornado debris assessment in Leon County, Florida, which was hit by two EF-2 and an EF-1 tornadoes in May 2024. Using satellite imagery from the Planetscope satellite and Geographic Information Systems (GIS), a macro-level evaluation of tornado debris impact was conducted, particularly on roadways and impacted communities. The proposed approach includes an evaluation of the overall post-tornado debris impact across the entire county and its population, and a detailed analysis of debris impact on roadways and its effect on accessibility. Spectral indices from satellite images, specifically the Normalized Difference Vegetation Index (NDVI), were utilized to derive assessment parameters. By comparing NDVI values from pre- and post-tornado images, we analyzed changes in vegetation and debris accumulation along roadway segments leading to possible roadway closures. This integrated method provides critical insights for enhancing disaster response and recovery operations in tornado-prone regions. Findings indicate that high volumes of vegetative debris were present in the south-central parts of the county, which is occupied by the highest population of county residents. The roadway segments in this region also recorded highest debris volumes, which is a critical information for agencies that need to know highly impacted locations. Comparing the results to ground truth damage data, the accuracy recorded was 74%.more » « less
-
Abstract The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms (specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that only produce one tornado. These results are important for understanding how tornado warning performance varies during individual storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) may increase warning confidence for the first tornado produced by each storm. Significance StatementIn this study, we focus on better understanding real-time tornado warning performance on a storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other words, for storms that produce multiple tornadoes, thefirsttornado is generally the least likely to be warned in advance; when it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for improving warning performance.more » « less
-
Abstract Tornado risk, as determined by the occurrence of atmospheric conditions that support tornado incidence, has exhibited robust spatial trends in the United States Southern Plains and Mid-South during recent decades. The consequences of these risk changes have not been fully explored, especially in conjunction with growing societal vulnerability. Herein, we assess how changes in risk and vulnerability over the last 40 years have collectively and individually altered tornado-housing impact potential. Results indicate that escalating vulnerability and exposure have outweighed the effects of spatially changing risk. However, the combination of increasing risk and exposure has led to a threefold increase in Mid-South housing exposure since 1980. Though Southern Plains tornado risk has decreased since 1980, amplifying exposure has led to more than a 50% increase in mean annual tornado-housing impact potential across the region. Stakeholders should use these findings to develop more holistic mitigation and resilience-building strategies that consider a dynamically changing tornado disaster landscape.more » « less
-
Abstract Timely communication of warnings is essential to protection of lives and properties during tornado outbreaks. Both official and personal channels of communication prove to have considerable impact on the overall outcome. In this study, an agent-based model is developed to simulate warning’s reception–dissemination process in which a person is exposed to, receives, and sends information while interacting with others. The model is applied to an EF5 tornado (EF indicates enhanced Fujita scale) that struck Moore, Oklahoma, in 2013. The parameters are calibrated using publicly available data or a poststorm telephone survey or were derived from literature reviews, expert judgement, and sensitivity analysis. The result shows a reasonable agreement between modeled and observed reception rates for older and younger adults and for different channels, with errors of less than 20 percentage points. Similar agreement is also seen for the average numbers of warning sources. The subsequent simulation indicates that, in the absence of tornado sirens, the overall reception rates for younger and older adults would drop from the baseline by 17 and 6 percentage points, respectively. Concurrently, there is a large decline in the number of warning sources. When a persons’ social network is enlarged, the reception rate for older adults improves from 77% to 80%, whereas for younger adults it stays unchanged. The impact of increased connectivity is more pronounced when people are not watching television or a tornado siren is not available. Significance StatementEvery year, tornadoes cause significant property damage and numerous casualties in the United States. This study aims to understand how tornado warnings reach the at-risk public through various communication channels. Using the agent-based model and simulation, we are able to reconstruct the dynamic patterns of warning’s reception–dissemination process for older and younger adults within a historical EF5 tornado. Further analysis confirms the importance of tornado sirens in not only alerting more residents about the dangerous weather condition but also prompting protective actions. In the meantime, an increase in social connectivity among residents would compensate for the lack of exposure to television and tornado siren. Future work should investigate the robustness of this model and its parameters when applied to other tornado outbreaks.more » « less